{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ψηφιακά Κυκλώματα.
Advertisements

Συνδυαστικα κυκλωματα με MSI και LSI
Τομέας Αρχιτεκτονικής Η/Υ & Βιομηχανικών Εφαρμογών
Συνδυαστικά Κυκλώματα
13.1 Λογικές πύλες AND, OR, NOT, NAND, NOR
Συνδιαστικά Λογικά Κυκλώματα
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
Μνήμη και Προγραμματίσιμη Λογική
ΕΝΟΤΗΤΑ 5Η ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΤΗΣ ΤΥΠΙΚΗΣ ΛΟΓΙΚΗΣ Α΄
Άλγεβρα Boole και Λογικές Πύλες
2. Άλγεβρα Boole και Λογικές Πύλες
3. Απλοποίηση Συναρτήσεων Boole
HY 120 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Ασυγχρονα ακολουθιακα κυκλωματα.
4. Συνδυαστική Λογική 4.1 Εισαγωγή
ΕΝΟΤΗΤΑ 6Η ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΤΗΣ ΤΥΠΙΚΗΣ ΛΟΓΙΚΗΣ Β΄
ΗΥ120 "ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ" ΙCs.
6.1 Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής.
Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών
ΕΝΟΤΗΤΑ 11 Η ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΟΙ ΛΟΓΙΚΟΙ ΠΙΝΑΚΕΣ (PROGRAMMABLE LOGIC ARRAYS)  Οι λογικοί Πίνακες ως γεννήτριες συναρτήσεων  Επίπεδα AND-OR και OR-AND.
συγχρονων ακολουθιακων κυκλωματων
ΗΥ120 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Συναρτησεις Boole.
Συνδυαστικά Κυκλώματα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
HY 120 "ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ" Programming Logic Devices (PLDs) (Συσκευες Προγραμματιζομενης Λογικης)
ΗΜΥ 100: Εισαγωγή στην Τεχνολογία Διάλεξη 17 Εισαγωγή στα Ψηφιακά Συστήματα: Μέρος Γ TΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ.
ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΚΥΚΛΩΜΑΤΩΝ ΠΟΛΛΩΝ ΕΞΟΔΩΝ
Οι λογικές πράξεις και οι λογικές πύλες
Λογικές πύλες Λογικές συναρτήσεις
ΚΙΝΔΥΝΟΙ (HAZARDS) ΣΤΑ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ Hazard είναι κάθε στιγμιαίο λάθος (glitch) που εμφανίζεται στην έξοδο ενός συνδυαστικού κυκλώματος Οφείλεται.
Εξομοιωτής Ψηφιακών Κυκλωμάτων
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
Ψηφιακή Σχεδίαση Εργαστήριο Τετάρτη 14/10/2015. Μέρος 1ο Ελαχιστόροι-Μεγιστόροι.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 8: Ολοκληρωμένα κυκλώματα – Συνδυαστική λογική – Πολυπλέκτες – Κωδικοποιητές - Αποκωδικοποιητές Δρ Κώστας Χαϊκάλης ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ.
Ψηφιακή Σχεδίαση Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής.
3-1 Υλοποιήσεις λογικών συναρτήσεων x y F=xy+z’ z.
ΑΞΙΩΜΑΤΑ ΤΗΣ ΑΛΓΕΒΡΑΣ BOOLE (αξιώματα Huntington) 1. Κλειστότητα α. ως προς την πράξη + (OR) β. ως προς την πράξη  (AND) 2. Ουδέτερα.
Τέταρτο μάθημα Ψηφιακά Ηλεκτρονικά.
Έβδομο μάθημα Ψηφιακά Ηλεκτρονικά.
Τρίτο μάθημα Ψηφιακά Ηλεκτρονικά.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 4: Απλοποίηση (βελτιστοποίηση) λογικών συναρτήσεων με την μέθοδο του χάρτη Karnaugh (1ο μέρος) και υλοποίηση με πύλες NAND -
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
Ένατο μάθημα Ψηφιακά Ηλεκτρονικά.
Όγδοο μάθημα Ψηφιακά Ηλεκτρονικά.
Συστήματα CAD Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών
Δυαδική λογική ΚΑΙ (AND) H (ΟR) ΟΧΙ (NOT)
Έκτο μάθημα Ψηφιακά Ηλεκτρονικά.
Πέμπτο μάθημα Ψηφιακά Ηλεκτρονικά.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 5: Απλοποίηση (βελτιστοποίηση) λογικών συναρτήσεων με την μέθοδο του χάρτη Karnaugh (2ο μέρος) Δρ Κώστας Χαϊκάλης ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ.
Ψηφιακή Σχεδίαση Εργαστήριο Τετάρτη 9/12/2015.
Διάλεξη 9: Συνδυαστική λογική - Ασκήσεις Δρ Κώστας Χαϊκάλης
Εισαγωγή στους Η/Υ Ενότητα 11: Αλγεβρικές πράξεις στους Η/Υ
“Ψηφιακός έλεγχος και μέτρηση της στάθμης υγρού σε δεξαμενή"
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 7: Βελτιστοποίηση-ελαχιστοποίηση λογικών συναρτήσεων με χάρτη Karnaugh - Ασκήσεις Δρ Κώστας Χαϊκάλης ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ.
Διάλεξη 3: Αλγεβρα Boole - Ασκήσεις Δρ Κώστας Χαϊκάλης
Ψηφιακή Σχεδίαση εργαστήριο
Χειμερινό εξάμηνο 2017 Πέμπτη διάλεξη
Χειμερινό εξάμηνο 2017 Τέταρτη διάλεξη
Λογικές πύλες και υλοποίηση άλγεβρας Boole ΑΡΒΑΝΙΤΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ(ΣΥΝΕΡΓΑΤΕΣ):ΔΗΜΗΤΡΙΟΣ ΔΑΒΟΣ- ΜΑΡΙΑ ΕΙΡΗΝΗ KAΛΙΑΤΣΗ-ΦΡΑΤΖΕΣΚΟΣ ΒΟΛΤΕΡΙΝΟΣ… ΕΠΠΑΙΚ ΑΡΓΟΥΣ.
Ψηφιακή Σχεδίαση εργαστήριο
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008
ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 2008
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005
Сфера.
Καταχωρητής Ι3 Α3 D Ι2 Α2 D Ι1 Α1 D Ι0 Α0 D CP.
Υλοποιήσεις λογικών συναρτήσεων
Μεταγράφημα παρουσίασης:

{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης

ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ Ο Αποκωδικοποιητής (Decoder) nx2 n είναι ένα συνδυαστικό κύκλωμα που μετατρέπει τη δυαδική πληροφορία n γραμμών εισόδου σε 2 n γραμμές εξόδου που αποτελούν τους ελάχιστους όρους των μεταβλητών εισόδου.

ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ 2x4 Ο Αποκωδικοποιητής 2x4 έχει δυο εισόδους A και B και τέσσερις εξόδους D0, D1, D2 και D3. D0=A’B’ D1=A’B D2=AB’ D3=AB

 Ένας αποκωδικοποιητής παράγει τους 2 n ελαχιστόρους των n μεταβλητών εισόδου. Εφόσον κάθε συάρτηση Boole μπορεί να εκφραστεί ως άθροισμα ελαχιστόρων, θα μπορούσαμε να χρησιμοποιήσουμε ένα αποκωδικοποιητή να παρα΄γει ελαχιστόρους και μια εξωτερική πύλη OR για να σχηματίσει το άθροισμα τους. ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ

 Μια συνάρτηση F με k ελαχιστόρους απαιτεί μια πύλη OR k εισόδους. Η συνάρτηση αυτή μπορεί εκφραστεί με 2 n -k ελαχιστόρους στη συμπληρωματική της μορφή F’. Εάν ο αριθμός k των ελαχιστόρων είναι μεγαλύτερος από 2 n /2, τότε η F’ μπορεί να εκφραστεί με λιγότερους ελαχιστόρους από όσους η F. Σε αυτή την περίπτωση, πρέπει να χρησιμοποιήσουμε μια πύλη NOR με 2 n -k εισόδους. Η έξοδος της NOR, θα παράγει την κανονική έξοδο της F. ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ !

 Για το λόγο αυτό υπάρχουν αποκωδικοποιητές(74138) που στην έξοδο τους παράγουν τα συμπληρώματα των τιμών του παραπάνω πινακα αληθείας  Ο πίνακας αληθείας τους έχει την παρακάτω μορφή. ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ D0=A+B D1=A+B’ D2=A’+B D3=A’+B’

 S(x,y,z) = Σ(1,2,4,7)  C(x,y,z) = Σ(3,5,6,7) Υλοποίηση Πλήρους Αθροιστή με αποκωδικοποιητή 3χ8

 Υλοποιείστε το κύκλωμα του πλήρη αφαιρέτη με τη χρήση αποκωδικοποιητή 3χ8 (75138) και πύλης NOR(7402).  Γράψτε πίνακα αληθείας  Εκφράστε τις δύο εξοδους σε αθροίσματα ελαχιστόρων.  Σχεδιάστε το λογικό κύκλωμα  Υλοποιείστε στο εργαστήριο  Το παράγει F’ Άσκηση για το σπίτι