Ενότητα 2: Κατανομή Gauss Καθηγήτρια Γεωργά Σταυρούλα Τμήμα Φυσικής ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 2.1: Μυθολογία Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία.
Advertisements

Γενική Οικονομική Ιστορία Ενότητα # 3: Οι μεγάλες αυτοκρατορίες Διδάσκων: Ιωάννα-Σαπφώ Πεπελάση Τμήμα: Οικονομικής Επιστήμης.
Ενότητα 3 : Στρογγυλοποίηση- Σημαντικά Ψηφία πειραματικής τιμής, αποτελέσματος πράξεων και σφάλματος Καθηγήτρια Γεωργά Σταυρούλα Τμήμα Φυσικής ΕΡΓΑΣΤΗΡΙΟ.
Ιστορία και Θεολογία των Εκκλησιαστικών Ύμνων Ενότητα 2: Η πρώτη περίοδος της εκκλησιαστικής υμνογραφίας (Α´ - Δ´αι.) Γεώργιος Φίλιας Θεολογική Σχολή Τμήμα.
Τμήμα Τεχνολόγων Γεωπόνων Τίτλος Μαθήματος: ΚΑΛΛΩΠΙΣΤΙΚΑ ΔΕΝΤΡΑ ΚΑΙ ΘΑΜΝΟΙ Ενότητα 2: Χαρακτηριστικά φύλλων ανθέων και καρπών Γρηγόριος Βάρρας Αν. Καθηγητής.
Τμήμα Τεχνολόγων Γεωπόνων Τίτλος Μαθήματος: ΚΑΛΛΩΠΙΣΤΙΚΑ ΔΕΝΤΡΑ ΚΑΙ ΘΑΜΝΟΙ Ενότητα 10: Παράγωγη καλλωπιστικών φυτών. Μέρος Β’ Γρηγόριος Βάρρας Αν. Καθηγητής.
Αριστοτέλης: Γνωσιοθεωρία Μεταφυσική Ενότητα 5: Τα γένη των συμβεβηκότων / H μέθοδος της διαίρεσης 1 Στασινός Σταυριανέας Σχολή Ανθρωπιστικών & Κοινωνικών.
Διδακτική της Λογοτεχνίας στην Προσχολική Εκπαίδευση Εισαγωγή στον Γραμματισμό – Πρακτικές Ασκήσεις Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής.
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλίας Χημεία Τροφίμων Ενότητα #6: Βιταμίνες και Πρόσθετα Αθανάσιος Μανούρας Σχολή Τεχνολογίας Γεωπονίας και Τεχνολογίας.
Διδασκαλία και Μάθηση στο Νηπιαγωγείο: Σχεδιασμός Εκπαιδευτικών Δραστηριοτήτων Ι Ενότητα 4: Προσεγγίζοντας τα δυσάρεστα συναισθήματα Διδάσκουσα: Βασιλική.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΕΝΟΤΗΤΑ :Η απογραφή Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου.
Γενική Οικονομική Ιστορία Ενότητα # 2: Η Ευρώπη πριν από τη Βιομηχανική Επανάσταση Διδάσκων: Ιωάννα-Σαπφώ Πεπελάση Τμήμα: Οικονομικής Επιστήμης.
Νεοελληνικό εκπαιδευτικό σύστημα Ενότητα 1 η : Στόχοι και παιδαγωγικές αρχές του μαθήματος Παντελής Κυπριανός Σχολή Κοινωνικών και Ανθρωπιστικών Επιστημών.
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ Ενότητα 1: Εισαγωγή στην έννοια και την ύλη της Εφαρμοσμένης Ηθικής Διδάσκων: Μιχαήλ Παρούσης, Αναπλ. Καθηγητής Σχολή Ανθρωπιστικών και.
Εισαγωγή στη λογιστική, Ενότητα :Λογιστικό αποτέλεσμα, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΗΠΕΙΡΟΥ – Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου.
Τμήμα Τεχνολόγων Γεωπόνων Τίτλος Μαθήματος: ΕΠΑΓΓΕΛΜΑΤΙΚΕΣ ΜΕΛΕΤΕΣ - ΑΝΑΛΥΣΗ ΤΙΜΩΝ ΕΡΓΩΝ ΠΡΑΣΙΝΟΥ Ενότητα 3: Σύνταγμα - Δικαστήρια Γρηγόριος Βάρρας Αν.
Εορτολογία Ενότητα 2: Η εορτή του Πάσχα Γεώργιος Φίλιας Θεολογική Σχολή Τμήμα Κοινωνικής Θεολογίας.
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ Ενότητα 8 (PART B): Εταιρική Κοινωνική Ευθύνη και Επιχειρείν Διδάσκων: Μιχαήλ Παρούσης, Αναπλ. Καθηγητής Σχολή Ανθρωπιστικών και Κοινωνικών.
Εισαγωγή στη λογιστική, Ενότητα :Λογαριασμοί, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΗΠΕΙΡΟΥ – Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου ΕΙΣΑΓΩΓΗ.
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 2.1: Μυθολογία Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία.
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ Ενότητα 10: Φιλοσοφική Συμβουλευτική Διδάσκων: Μιχαήλ Παρούσης, Αναπλ. Καθηγητής Σχολή Ανθρωπιστικών και Κοινωνικών Σπουδών Τμήμα Φιλοσοφίας.
Κλασσική Μηχανική Ενότητα 6: Κινηματική και Δυναμική του Στερεού Σώματος Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Ιστορία και Θεολογία των Εκκλησιαστικών Ύμνων
Ο Υπαλληλικός Κώδικας του 1951
Η μονιμότητα των δημοσίων υπαλλήλων
Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου
Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Εορτολογία Ενότητα 3: Η Εορτή των Χριστουγέννων και Θεοφανείων
Εορτολογία Ενότητα 8: Οι Εορτές των Αγίων Γεώργιος Φίλιας
Ενότητα 9: Ο Χειμώνας Διδάσκουσα: Βασιλική Φωτοπούλου
ΚΟΙΝΟΤΙΚΗ ΝΟΣΗΛΕΥΤΙΚΗ Ι
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ
Οι διοικητικές εκκαθαρίσεις
Εορτολογία Ενότητα 4: Οι Εορτές της Αναλήψεως και της Πεντηκοστής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Νεοελληνικό εκπαιδευτικό σύστημα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ψυχική Υγεία - Ψυχική Νόσος - Φυσιολογικότητα (Ορισμός, κριτήρια, βασικές έννοιες) (Ι) Α. Ψυχική Υγεία Σύμφωνα με την Παγκόσμια Οργάνωση Υγείας σαν "ψυχική.
Αριστοτέλης: Γνωσιοθεωρία Μεταφυσική
Διδάσκων: Μιχαήλ Παρούσης, Αναπλ. Καθηγητής
Λογιστική Κόστους Ενότητα # 1: Εισαγωγή Διδάσκουσα: Σάνδρα Κοέν
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ο Πλάτων και ο Αριστοτέλης για την ψυχή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Αριστοτέλης: Γνωσιοθεωρία Μεταφυσική
Τμήμα Κοινωνικής Θεολογίας
Ενότητα 5: Συναισθήματα θετικά και δυσάρεστα
ΦΙΛΟΣΟΦΙΑ ΤΟΥ ΔΙΚΑΙΟΥ Ενότητα 8: Το Σύνταγμα του 1975: τα μέρη του και το περιεχόμενό του Διδάσκων: Μιχαήλ Παρούσης, Αναπλ. Καθηγητής Σχολή Ανθρωπιστικών.
Αριστοτέλης: Γνωσιοθεωρία Μεταφυσική
Εισαγωγή στις Επιστήμες της Αγωγής
ΠΕΤΡΟΛΟΓΙΑ ΜΑΓΜΑΤΙΚΩΝ & ΜΕΤΑΜΟΡΦΩΜΕΝΩΝ ΠΕΤΡΩΜΑΤΩΝ
Ενότητα 10: Άτμιση του Ξύλου.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Τεχνολογικό Εκπαιδευτικό
ΠΕΤΡΟΛΟΓΙΑ ΜΑΓΜΑΤΙΚΩΝ & ΜΕΤΑΜΟΡΦΩΜΕΝΩΝ ΠΕΤΡΩΜΑΤΩΝ
Σχολή Ανθρωπιστικών και Κοινωνικών Σπουδών Τμήμα Φιλοσοφίας
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ιστορία και Θεολογία των Εκκλησιαστικών Ύμνων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Επιχειρησιακές Επικοινωνίες
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Μεταγράφημα παρουσίασης:

Ενότητα 2: Κατανομή Gauss Καθηγήτρια Γεωργά Σταυρούλα Τμήμα Φυσικής ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ Πηγή: flickrflickr Πηγή: wikimediawikimedia Πηγή: pixabaypixabay

 Σύμφωνα με τη στατιστική κατανομή αν ένα φαινόμενο είναι πράγματι τυχαίο, τότε η οριακή κατανομή που θα προκύψει μετά από άπειρες προσπάθειες θα είναι η κανονική κατανομή ή κατανομή Gauss.  Η κατανομή Gauss είναι η πιο κοινή κατανομή στην θεωρία πιθανοτήτων: Εάν επαναλάβουμε ένα πείραμα πολλές φορές (…άπειρες…) τότε το αποτέλεσμα περιγράφεται από τη συμμετρική καμπύλη (-κώδωνας-) Gauss. ΚΑΤΑΝΟΜΗ GAUSS

Ιστόγραμμα – Πολύγωνο συχνοτήτων Μέτρηση της αντίστασης ενός αντιστάτη Οι μετρήσεις κατανέμονται στο διάστημα μεταξύ 4,5 ΚΩ και 6,5 ΚΩ Μέση τιμή : Εύρος τιμών: 6,5 – 4,5 = 2 ΚΩ Κλάσεις = κ = 1 +3,3log(Ν) = 5 Πλάτος κλάσης = 2/5 = 0,4 ΚΩ

ΚΑΤΑΝΟΜΗ GAUSS Ιστόγραμμα –Πολύγωνο Συχνοτήτων Πολύγωνο συχνοτήτων

ΚΑΤΑΝΟΜΗ GAUSS Κατανομή Gauss ή Κανονική κατανομή Συμμετρική καμπύλη γύρω από το 0 σημαίνει ότι η μέτρηση υπόκειται σε τυχαία σφάλματα. Απόκλιση της συμμετρίας γύρω από το 0 σημαίνει είτε ότι η μέτρηση ήταν κακή είτε ότι υπεισέρχoνται συστηματικά σφάλματα.

ΚΑΤΑΝΟΜΗ GAUSS Η πιθανότητα ώστε μια νέα μέτρηση x να βρίσκεται στο διάστημα (-σ…..+σ), είναι ίση με 68% Η πιθανότητα ώστε μια νέα μέτρηση x να βρίσκεται στο διάστημα (-2σ…..+2σ), είναι ίση με 95% Το 2σ ονομάζεται: Εύρος ημίσειας τιμής (FWHM) σ = 0,47 2σ -2σ2σ

ΚΑΤΑΝΟΜΗ GAUSS Το εύρος των διαστημάτων σε ένα ιστόγραμμα πρέπει να μην είναι: ούτε πολύ μεγάλο [διότι τότε μεγάλο πλήθος των μετρήσεων θα περιλαμβάνεται σε ένα μόνο διάστημα!], ούτε πολύ μικρό [διότι τότε θα υπάρχουν διαστήματα τα οποία δεν θα περιέχουν καμία μέτρηση!], με αποτέλεσμα το ιστόγραμμα να μη δίνει σωστές πληροφορίες…. Αυξάνοντας το συνολικό πλήθος των μετρήσεων, έχουμε τη δυνατότητα να επιλέγουμε όλο και μικρότερα διαστήματα για την κατασκευή του ιστογράμματος! σ = 0,161 2σ -2σ2σ

Η κατανομή Gauss ή κανονική κατανομή δίδεται από τη σχέση: Το σ καθορίζει το εύρος της κατανομής και λαμβάνεται ως μέτρο του σφάλματος, Χ είναι η κεντρική τιμή. ΚΑΤΑΝΟΜΗ GAUSS

Για n μετρήσεις του ίδιου μεγέθους, τα σ και Χ προσδιορίζονται από τις σχέσεις: Το σ x ονομάζεται τυπική απόκλιση της σειράς των μετρήσεων – Εξαρτάται από την ποιότητα και όχι από το πλήθος n των μετρήσεων! ΚΑΤΑΝΟΜΗ GAUSS

Ορίζουμε επίσης την τυπική απόκλιση της μέσης τιμής των μετρήσεων – Εξαρτάται από το πλήθος n των μετρήσεων: ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ

Άρα σε μια σειρά n μετρήσεων: Η πιο αξιόπιστη τιμή είναι η μέση τιμή: Κάθε μέτρηση παρουσιάζει απόκλιση από τη μέση τιμή: Η σειρά των n μετρήσεων χαρακτηρίζεται από την τυπική απόκλιση: ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ

Η τυπική απόκλιση της μέσης τιμής είναι ίση με: και το τελικό αποτέλεσμα θα εκφράζεται από την: Το σχετικό σφάλμα (ή η % απόκλιση) της μέσης τιμής, προσδιορίζεται από τη σχέση: ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ

Σημείωμα Χρήσης Έργων Τρίτων Το υλικό της παρουσίασης προέρχεται από τις σημειώσεις: 1) Σ.Σακκόπουλου: "Ανάλυση Πειραματικών Δεδομένων-Θεωρία Σφαλμάτων" Παν/κές Παραδόσεις, Πάτρα ) Σ. Σακκόπουλου: "Εργαστήριο Φυσικής Ι" Παν/κές Παραδόσεις, Πάτρα εκτός αν αναγράφεται διαφορετικά. Οι ιστότοποι προέλευσης ήταν ενεργοί κατά την 13η Ιουνίου 2015 οπότε και καταχωρήθηκαν οι παραπομπές.

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Σταυρούλα Γεωργά. «Εργαστήριο Φυσικής. Ενότητα 2». Έκδοση: 1.0. Πάτρα Διαθέσιμο από τη δικτυακή διεύθυνση: /PHY1952/ /PHY1952/

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφ’ όσον υπάρχει). Τέλος Ενότητας