ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
National Technical University of Athens (NTUA), GreeceInstitute of Structural Analysis & Seismic Research (ISASR) Προχωρημένες υπολογιστικές τεχνικές και.
Advertisements

1 One Torus to Rule them All: Multi-dimensional Queries in P2P Systems Authors: Prasanna Ganesan, Beverly Yang, Hector Garcia-Molina Ευθυμία Ρόβα.
Παράλληλη/Κατανεμημένη Επεξεργασία και Εφαρμογές
1920s ©Υπουργείο Παιδείας και Πολιτισμού.
1 * Σκεφτείτε τους φυσικούς πόρους της γης σαν ένα κληροδότημα το οποίο δίδεται μία και μόνο φορά από τη φύση στον άνθρωπο. - Πώς πρέπει το κληροδότημα.
Παιδιά με παράγοντες «υψηλού κινδύνου». Η ανάπτυξη ενός παιδιού μπορεί να επηρεαστεί από ατομικούς- βιολογικούς παράγοντες, οι οποίοι δρουν προγεννητικά.
ΚΟΙΝΩΝΙΚΗ ΨΥΧΟΛΟΓΙΑ ΚΟΙΝΩΝΙΚΗ ΑΠΟΔΟΣΗ Μάθημα 10ον.
Κοινή Γεωργική Πολιτική (ΚΓΠ) Στάθης Κλωνάρης Γεωπονικό Πανεπιστήμιο Αθηνών.
ΚΟΥΤΣΙΑΝΟΥ ΜΑΡΙΑ Α.Μ ΜΟΥΤΡΙΚΑ ΑΝΝΑ Α.Μ ΣΤΕΛΛΑ ΕΙΡΗΝΗ Α.Μ « ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΓΙΑ ΤΑΞΗ ΜΕ ΠΑΙΔΙ ΜΕ ΔΕΠ.
TM KEΦΑΛΑΙΟ 8 & 9 ΤΕΧΝΙΚΕΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ. Συμβουλές που θα βοηθήσουν να χαλαρώσετε και να μειώσετε τα επίπεδα άγχους Καταγράψτε όλα τα πράγματα.
Αντιλήψεις και στερεότυπα των χρηστών των νέων τεχνολογιών απέναντι στην καινοτομία Κοντού Β. Χαρίκλεια ΠΒ Πανεπιστήμιο Στερεάς Ελλάδος Πληροφορική.
 ΦΑΣΗ 1 η : ΕΠΙΛΟΓΗ ΠΡΟΜΗΘΕΥΤΗ με Αξιολόγηση εναλλακτικών προμηθευτών για το ίδιο προϊόν ΒΑΣΙΚΑ ΚΡΙΤΗΡΙΑ : πρέπει να είναι γνωστό πόσο δημοφιλές είναι.
Δρ. Σπυρούλα Σπύρου C.D.A. Κολλέγιο  Μάθημα
ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 4: ΘΕΩΡΙΑ ΤΗΣ ΚΕΦΑΛΑΙΑΓΟΡΑΣ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ.
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Πρόγραμμα Μεταπτυχιακών Σπουδών "Λογιστική και Ελεγκτική" ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ Εισαγωγική.
Ενότητα 1 1 Πρότυπο κόστος. Τι είναι: –Πολύ σωστά και πολύ λεπτομερειακά υπολογισμένο προϋπολογιστικό κόστος Τι εκφράζει: –Στόχους που θα πρέπει να επιτευχθούν.
1. Τ Α Μ ΕΡΗ Τ ΗΣ Π ΑΡΟΥΣΙΑΣΗΣ  Κατ'αρχήν θα ήθελα να ευχαριστήσω τον κ. Λουράντο, τον κ. Μακρυγιάννη και φυσικά τον αγαπητό συνάδελφο από την PGEU τον.
ΚΟΙΝΩΝΙΚΉ ΨΥΧΟΛΟΓΊΑ Δήμητρα Παπαστεργίου MSc- Λάρισα 2016.
Εφαρμογές – Ασκήσεις (Ερωτήσεις 1-3) Αναλυτής εκτιμά ότι η απόδοση της μετοχής Α και Β θα κατανεμηθεί ως ακολούθως : ΠιθανότηταΑπόδοση ΑΑπόδοση Β
Λήψη αποφάσεων στην Εκπαίδευση Ελευθερία Αργυροπούλου Επίκουρη Καθηγήτρια Πανεπιστημίου Κρήτης Πανεπιστήμιο Κύπρου, Οκτώβριος 2015.
10 ο ΔΕΙΘΝΕΣ ΣΥΝΕΔΡΙΟ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΕΩΓΡΑΦΙΚΗΣ ΕΤΑΙΡΕΙΑΣ ΘΕΣΣΑΛΟΝΙΚΗ 2014 ΚΑΙΝΟΤΟΜΕΣ ΚΑΙ ΑΝΘΕΚΤΙΚΕΣ ΠΟΛΙΤΙΚΕΣ ΕΝΤΑΞΗΣ ΚΑΙ ΑΠΑΣΧΟΛΗΣΗΣ ΓΙΑ ΤΟΥΣ ΜΕΤΑΝΑΣΤΕΥΤΙΚΟΥΣ.
Το νέο τοπίο στην αγορά ηλεκτρικής ενέργειας και ο ρόλος του ΔΕΔΔΗΕ
ΠΡΟΛΗΨΗ ΝΟΣΩΝ ΠΡΟΑΓΩΓΗ ΥΓΕΙΑΣ
ΟΜΑΔΑ 1 Γ1 (2).
Καθαρή Παρούσα Αξία Η διαφορά της τρέχουσας αξίας μιας επένδυσης από το τρέχον κόστος της ονομάζεται Καθαρή Παρούσα Αξία . Με άλλα λόγια, η Κ.Π.Α. μιας.
Επεξεργασία Ομιλίας & Ήχου
Μετανάστευση και ανάπτυξη
3. Μοντέλα κατανομής Μοντέλο κατανομής ενός διαμερίσματος
Ειδικές δίοδοι Αξιόπιστη προσομοίωση Μικροηλεκτρονικής διάταξης
Δρ. Χριστακόπουλος Γιάννης
ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ ΣΥΜΜΕΤΕΧΟΝΤΕΣ
ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ
Η Τέχνη του 19ου αιώνα Ενότητα # 10: Αγγλική Τέχνη: Η δεύτερη γενιά Προραφαηλιτών και ο αισθητισμός Αιλιάνα Μαρτίνη Τμήμα Ιστορίας.
Μάρκετινγκ Αθλητισμού & Αναψυχής
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Ι. Το φαινόμενο της μετανάστευσης
ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΕΞ΄ ΑΠΟΣΤΑΣΕΩΣ ΣΥΜΒΟΥΛΕΥΤΙΚΗ
Στόχοι Asking for and giving the time The weather
ΠΡΟΓΡΑΜΜΑ ΚΑΘΗΜΕΡΙΝΌΤΗΤΑΣ
Eπιμέλεια: Μανδηλιώτης Σωτήρης
Δημιουργία Διαφανειών με το PowerPoint
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας
Κολοκάσι Σωτήρας Κολοκάσι-Πούλλες Σωτήρας
Απ’ το ΚΕΔΔΥ στο ΚΕΔΔΥ Ξάνθη 21/3/2017.
Στόχοι 1. Asking for and giving the time 2. Verbs –ώ (conjugation B2)
Πανεπιστήμιο Στερεάς Ελλάδος
Επιχειρησιακές Επικοινωνίες
Πανεπιστήμιο Στερεάς Ελλάδος
Πρόγραμμα για την περιβαλλοντική μετανάστευση
ΣΥΝΟΡΑ ΚΑΙ ΜΟΡΦΕΣ ΕΤΕΡΟΤΗΤΑΣ
Ταχύτητα και ποιότητα κατά την απονομή της Δικαιοσύνης
Η πόλη της Πέτρας, στην Ιορδανία
آب و هواشناسی تابش.
ΔΙΟΙΚΗΣΗ & ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ
ΔΗΜΟΓΡΑΦΙΑ ΚΑΙ ΥΓΕΙΑ ΕΡΓΑΣΤΗΡΙΟ.
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ (Κ105)
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ (Κ105)
Η πόλη της Πέτρας, στην Ιορδανία
«Προώθηση οίνων σε αγορές τρίτων χωρών»
آنزيم ها محمدحسین ارشد رودی
Συμβουλευτικός Σταθμός Νέων Φλώρινας
Με Αφορμή Ένα Πρόβλημα …
ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ
Βασίλης Μακράκης* & Νέλλη Κωστούλα-Μακράκη *UNESCO Chair ICT in ESD
EιΣαγωγη Στη μελετη τηΣ διγλωΣΣιαΣ
Διαταραχή ελλειματικής προσοχής-Υπερκινητικότητας
Δάση & Ξυλεία.
Ηλεκτρονικές εφαρμογές Φορολογίας Κεφαλαίου
Μεταγράφημα παρουσίασης:

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ - ΕΞΕΛΙΚΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ) Κεφάλαια 5,6,7,8

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.2 Μετανάστευση (Migration) Μετανάστευση (Migration) Το πρότυπο (μοντέλο) Μετανάστευσης διαιρεί τον πληθυσμό σε πολλαπλάσια υποσύνολα του πληθυσμού. Αυτά τα υποσύνολα πληθυσμού εξελίσσονται ανεξάρτητα το ένα από το άλλο για ορισμένες γενεές (Χρόνος Απομόνωσης – Isolation Time). Μετά από το χρόνο απομόνωσης διάφορα άτομα διανέμονται μεταξύ των υποσυνόλων πληθυσμού (Μετανάστευση - Migration). Ο αριθμός ανταλλαγμένων ατόμων (Ποσοστό Μετανάστευσης – Migration Rate), η μέθοδος επιλογής των ατόμων για τη μετανάστευση και το σχέδιο της μετανάστευσης καθορίζει το μέγεθος της γενετικής ποικιλομορφίας που μπορεί να εμφανιστεί στα υποσύνολα πληθυσμού και την ανταλλαγή των πληροφοριών μεταξύ των υποσυνόλων πληθυσμού.

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.3 Η παράλληλη εφαρμογή του μοντέλου Μετανάστευσης παρουσίασε όχι μόνο μια σημαντική επιτάχυνση στο χρόνο υπολογισμού, αλλά συνέβαλλε και στη μείωση του αριθμού υπολογισμού της τιμής της αντικειμενικής συνάρτησης. Έτσι, ακόμη και για έναν απλό υπολογιστή, που εφαρμόζει παράλληλους αλγόριθμους κατά τρόπο τμηματικό (Ψευδό- Παράλληλοι Αλγόριθμοι) δίνει καλύτερα αποτελέσματα, αφού ο αλγόριθμος βρίσκει το σφαιρικό βέλτιστο συχνότερα ή με τους λιγότερους υπολογισμούς της συνάρτησης αξιολόγησης. Η επιλογή των ατόμων για τη μετανάστευση μπορεί να πραγματοποιηθεί: Ομοιόμορφα τυχαία (επιλογή οντοτήτων για τη μετανάστευση κατά τρόπο τυχαίο), Βασισμένη στην Καταλληλότητα (επιλογή των καλύτερων οντοτήτων για τη μετανάστευση).

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.4 Υπάρχουν πολλές δυνατότητες για τη δομή της μετανάστευσης των οντοτήτων μεταξύ των υποσυνόλων πληθυσμού. Παραδείγματος χάριν, η μετανάστευση μπορεί να πραγματοποιηθεί: μεταξύ όλων των υποσυνόλων πληθυσμού (πλήρης δικτυακή τοπολογία - απεριόριστη), Σχήμα 5.1 σε μια τοπολογία δαχτυλιδιών, Σχήμα 5.2 σε μια τοπολογία γειτονιάς, Σχήμα 5.3

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.5 Σχήμα 5.1: Απεριόριστη τοπολογία μετανάστευσης (πλήρης δικτυακή τοπολογία)

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.6 Η γενικότερη στρατηγική μετανάστευσης είναι αυτή της απεριόριστης μετανάστευσης (πλήρης δικτυακή τοπολογία). Εδώ, τα άτομα μπορούν να μεταναστεύσουν από οποιοδήποτε υποσύνολο πληθυσμού σε άλλο. Για κάθε υποσύνολο πληθυσμού, μια ομάδα πιθανών μεταναστών κατασκευάζεται από τα άλλα υποσύνολα πληθυσμού. Οι μεμονωμένοι μετανάστες έπειτα, καθορίζονται ομοιόμορφα τυχαία από αυτήν τη δεξαμενή. Στο Σχήμα 5.2 δίνεται μια λεπτομερής περιγραφή για το απεριόριστο σχήμα μετανάστευσης για 4 υποσύνολα πληθυσμού με την βασισμένη στην ικανότητα μέθοδο επιλογής. Τα υποσύνολα πληθυσμού 2, 3 και 4 κατασκευάζουν μια ομάδα των καλύτερων ατόμων τους (Μετανάστευση βασισμένη στην Ικανότητα). Ένα άτομο ομοιόμορφα και τυχαία επιλέγεται από αυτήν τη δεξαμενή και αντικαθιστά το χειρότερο άτομο στο υποσύνολο πληθυσμού 1. Αυτός ο κύκλος εκτελείται για κάθε υποσύνολο πληθυσμού. Κατά συνέπεια, εξασφαλίζεται ότι κανένα υποσύνολο πληθυσμού δεν θα λάβει οντότητες από τον εαυτό του.

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.7 Σχήμα 5.2: Σχήμα για τη μετανάστευση των ατόμων μεταξύ των υποσυνόλων

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.8 Το πιο βασικό Σχήμα μετανάστευσης είναι η Τοπολογία Δαχτυλιδιών. Εδώ τα άτομα μεταφέρονται μεταξύ των κατευθυντικά παρακείμενων υποσυνόλων πληθυσμού. Σχήμα 5.3: Τοπολογία Μετανάστευσης Δαχτυλιδιών

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.9 Μια παρόμοια στρατηγική με την Τοπολογία Δαχτυλιδιών είναι η μετανάστευση γειτονιάς του Σχήματος 5.4. Όπως την Τοπολογία Δαχτυλιδιών, η μετανάστευση γίνεται μόνο μεταξύ των κοντινότερων γειτόνων. Εντούτοις, η μετανάστευση μπορεί να εμφανιστεί σε καθεμία κατεύθυνση μεταξύ των υποσυνόλων πληθυσμού. Για κάθε υποσύνολο πληθυσμού, οι πιθανοί μετανάστες καθορίζονται, σύμφωνα με την επιθυμητή μέθοδο επιλογής, από τα παρακείμενα υποσύνολα πληθυσμού και η τελική επιλογή γίνεται από αυτήν την ομάδα των ατόμων.

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.10 Σχήμα 5.4: Τοπολογία Μετανάστευσης Γειτονιάς (2-D Eφαρμογή) Το Σχήμα 5.4 παρουσιάζει το πιθανό Σχήμα για μια 2-D εφαρμογή της τοπολογίας γειτονιάς. Μερικές φορές αυτή η δομή καλείται Δακτύλιο - Torus. Με το Πολύ-πληθυσμιακό Γενετικό Αλγόριθμο (Multipopulation), για κάθε λειτουργία τα αποτελέσματα που προέκυψαν ήταν καλύτερα απ' ότι σε έναν αλγόριθμο ενιαίου πληθυσμού, με αναλογικά περισσότερες οντότητες.

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.11 Σφαιρικό Μοντέλο – Εργαζόμενος / Αγρότης Το σφαιρικό μοντέλο υιοθετεί τον έμφυτο παραλληλισμό των γενετικών αλγορίθμων (πληθυσμός των ατόμων). Μια πιθανή εφαρμογή είναι ο αλγόριθμος εργαζομένων / αγροτών. Σχήμα 5.5: Γενετικός Αλγόριθμος Εργαζομένων / Αγροτών

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.12 Μοντέλο Διάχυσης (Diffusion Model): Μοντέλο Διάχυσης (Diffusion Model):χειρίζεται κάθε οντότητα χωριστά και επιλέγει το συνεργάτη ζευγαρώματος σε μια τοπική γειτονιά, παρόμοια με την τοπική επιλογή. Πραγματοποιείται μια διάχυση των πληροφοριών μέσω του πληθυσμού. Στο Σχήμα 5.6 παρουσιάζονται τα εικονικά νησιά αναζήτησης που θα εξελιχθούν.

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.13 Παράλληλοι ΕΑ Παράλληλοι ΕΑ Όλοι οι ΕΑ, επειδή διατηρούν έναν πληθυσμό από λύσεις, μπορούν από τη φύση τους να υλοποιηθούν παράλληλα. Παρ’ όλ’ αυτά, επειδή οι ΓΑ χρησιμοποιούν διασταύρωση, η οποία αποτελεί ένα τρόπο διανομής της πληροφορίας, υπάρχουν δύο εξαιρετικές παραλλαγές των ΓΑ που τους επιτρέπουν πλήρη παραλληλία. Η πρώτη μέθοδος, η οποία είναι και η πιο άμεση, είναι να υπάρχει ένας γενικός πληθυσμός με πολλούς επεξεργαστές για την αποτίμηση των λύσεων των ατόμων του πληθυσμού. Η δεύτερη μέθοδος, η οποία συχνά αποκαλείται το απομονωμένο μοντέλο (island model), διατηρεί ξεχωριστούς υπο-πληθυσμούς. Κάθε τόσο ένα άτομο από έναν από τους υπο-πληθυσμούς επιτρέπεται να μεταναστεύσει σε κάποιον άλλο υπο-πληθυσμό. Με αυτό τον τρόπο γίνεται η διανομή της πληροφορίας ανάμεσα στους υπο-πληθυσμούς.

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.14 Μία τρίτη μέθοδος, η οποία αποκαλείται το μοντέλο της γειτονιάς (neighbourhood model), διατηρεί επικαλυπτόμενες γειτονιές. Η γειτονιά από την οποία γίνεται επιλογή (για αναπαραγωγή και αντικατάσταση) περιορίζεται σε μια περιοχή γύρω από κάθε άτομο. Το τι θεωρείται κάθε φορά γειτονιά εξαρτάται από την τοπολογία γειτονιάς που χρησιμοποιείται. Για παράδειγμα, εάν ο πληθυσμός είναι διευθετημένος πάνω σε κάποιου τύπου σφαιρική δομή, τα άτομα μπορεί να επιτρέπεται να ζευγαρώνουν (και να ανταγωνίζονται) μόνο με γείτονες, οι οποίοι βρίσκονται μέσα σε μία συγκεκριμένη ακτίνα. Έτσι, εξαιτίας της έμφυτης φυσικής ικανότητας παραλληλίας μέσα στους ΕΑ, πάρα πολλές πρόσφατες εργασίες έχουν επικεντρωθεί στην εφαρμογή ΕΑ σε παράλληλες μηχανές. Χαρακτηριστικά είτε ένας επεξεργαστής αποτελεί μια ατομικότητα του πληθυσμού (στις μηχανές SIMD), είτε ένα υποσύνολο πληθυσμού (στις μηχανές MIMD). Σαφώς, τέτοιες εφαρμογές κρατούν την υπόσχεση των χρονικών μειώσεων εκτέλεσης.

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.15

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.16 Δεδομένου ότι καταλαβαίνουμε καλύτερα τις δυνάμεις και τις αδυναμίες των τρεχόντων εξελικτικών μοντέλων, είναι επίσης σημαντικό να επισκεφτούμε ξανά τη βιολογική και εξελικτική βιβλιογραφία για νέες ιδέες και εμπνεύσεις. Ο Booker (1992) έχει πρόσφατα επισημάνει τις συνδέσεις της θεωρίας Διασταύρωσης των ΓΑ με τη γενικότερη θεωρία κατανομής του Γενετικού Συνδυασμού πληθυσμών. Ο Muhlenbein (1993) έχει επικεντρωθεί στους EA, που διαμορφώνονται μετά από πρακτικές αναπαραγωγής. Στην κοινότητα του ΕΠ, ο Atmar (1992) δίνει έμφαση σε μερικά κοινά λάθη για την εξελικτική θεωρία και τους ΕΑ. Τα τελευταία χρόνια το ενδιαφέρον των επιστημόνων έχει προσανατολιστεί στην εύρεση αποδοτικών μεθόδων αποθήκευσης και ανάκτησης πληροφοριών.

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ (ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ) Τμήμα Μηχανικών Η/Υ & Πληροφορικής -Εργαστήριο Αναγνώρισης Προτύπων Διευθυντής: Σπύρος Λυκοθανάσης, Καθηγητής Κεφάλαιο 5: Παράλληλες Εφαρμογές Γ.Α.17 Οι ΕΑ έχουν χρησιμοποιηθεί στην ερμηνεία και την αποθήκευση χημικών δομών και στην ανάκτηση από βάσεις δεδομένων μορίων που περιέχουν συγκεκριμένες δομές (Jones κ.α. 1993). Η ανάκτηση εγγράφων τα οποία χαρακτηρίζονται από συγκεκριμένα γνωρίσματα γίνεται όλο και περισσότερο σημαντική καθώς όλο και μεγαλύτερος είναι ο όγκος των πληροφοριών που ανταλλάσσονται μέσω υπολογιστών. Εργαλεία για την ανάκτηση εγγράφων τα οποία περιέχουν συγκεκριμένες λέξεις έχουν κατασκευαστεί εδώ και πολλά χρόνια. Όμως τα εργαλεία αυτά υπόκεινται σε διάφορους περιορισμούς, κυρίως όταν κάποιος επιθυμεί να κατασκευάσει την κατάλληλη ερώτηση αναζήτησης, με αποτέλεσμα να μην ανταποκρίνονται στην πλειοψηφία των απαιτήσεων των χρηστών. Οι ερευνητές τα τελευταία χρόνια έχουν ασχοληθεί με τη χρήση ΕΑ για την κατασκευή ερωτήσεων αναζήτησης (Yang και Korfhage 1993).