Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Το πείραμα του Ερατοσθένη 6 ο Γυμνάσιο Κέρκυρας Συμμετέχουν οι εκπαιδευτικοί ΠΕ04: Βλάχος Αθανάσιος, Γαστεράτου Μάγδα,Γαρνέλης Αντώνης, Μπούρος Μάριος.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "Το πείραμα του Ερατοσθένη 6 ο Γυμνάσιο Κέρκυρας Συμμετέχουν οι εκπαιδευτικοί ΠΕ04: Βλάχος Αθανάσιος, Γαστεράτου Μάγδα,Γαρνέλης Αντώνης, Μπούρος Μάριος."— Μεταγράφημα παρουσίασης:

1 Το πείραμα του Ερατοσθένη 6 ο Γυμνάσιο Κέρκυρας Συμμετέχουν οι εκπαιδευτικοί ΠΕ04: Βλάχος Αθανάσιος, Γαστεράτου Μάγδα,Γαρνέλης Αντώνης, Μπούρος Μάριος και οι μαθητές των τμημάτων Α2,Β1 και μαθητές ένταξης του Β1 και Γ1 και οι μαθητές των τμημάτων Α2,Β1 και μαθητές ένταξης του Β1 και Γ1

2 Ποιος ήταν ο Ερατοσθένης Ο Ερατοσθένης (Κυρήνη 276 π.Χ. - Αλεξάνδρεια 194 π.Χ.) ήταν αρχαίος Έλληνας μαθηματικός, γεωγράφος και αστρονό μος. Θεωρείται ο πρώτος που υπολόγισε το μέγεθος της Γης και κατασκεύασε ένα σύστημα συντεταγμένων με παράλληλους και μεσημβρινούς. Αν και γεννήθηκε στην Κυρήνη (στη σημερινή Λιβύη), έζησε και εργάστηκε και πέθανε στην Αλεξάνδρεια, την πρωτεύουσα της πτολεμαϊκής Αιγύπτου. Σπούδασε κυρίως στην Αλεξάνδρεια και για κάποια χρόνια στην Αθήνα. Το 236 π.Χ. ορίστηκε από τον Πτολεμαίο τον Γ΄ τον Ευεργέτη βιβλιοθηκάριος της βιβλιοθήκης της Αλεξάνδρειας, διαδεχόμενος τον Ζηνόδοτο. Ο Ερατοσθένης (Κυρήνη 276 π.Χ. - Αλεξάνδρεια 194 π.Χ.) ήταν αρχαίος Έλληνας μαθηματικός, γεωγράφος και αστρονό μος. Θεωρείται ο πρώτος που υπολόγισε το μέγεθος της Γης και κατασκεύασε ένα σύστημα συντεταγμένων με παράλληλους και μεσημβρινούς. Αν και γεννήθηκε στην Κυρήνη (στη σημερινή Λιβύη), έζησε και εργάστηκε και πέθανε στην Αλεξάνδρεια, την πρωτεύουσα της πτολεμαϊκής Αιγύπτου. Σπούδασε κυρίως στην Αλεξάνδρεια και για κάποια χρόνια στην Αθήνα. Το 236 π.Χ. ορίστηκε από τον Πτολεμαίο τον Γ΄ τον Ευεργέτη βιβλιοθηκάριος της βιβλιοθήκης της Αλεξάνδρειας, διαδεχόμενος τον Ζηνόδοτο.

3 Έκανε αρκετές σημαντικές συνεισφορές στα Μαθηματικά και ήταν φίλος του σπουδαίου μαθηματικού Αρχιμήδη. Έκανε αρκετές σημαντικές συνεισφορές στα Μαθηματικά και ήταν φίλος του σπουδαίου μαθηματικού Αρχιμήδη. Γύρω στο 225 π.Χ. εφηύρε τον σφαιρικό αστρολάβο, που τον χρησιμοποιούσαν ευρέως μέχρι την εφεύρεση του πλανηταρίου τον 18ο αιώνα. Γύρω στο 225 π.Χ. εφηύρε τον σφαιρικό αστρολάβο, που τον χρησιμοποιούσαν ευρέως μέχρι την εφεύρεση του πλανηταρίου τον 18ο αιώνα. Αναφέρεται από τον Κλεομήδη στο Περί της κυκλικής κινήσεως των ουρανίων σωμάτων ότι γύρω στο 240 π.Χ. υπολόγισε την περιφέρεια της Γης. Αναφέρεται από τον Κλεομήδη στο Περί της κυκλικής κινήσεως των ουρανίων σωμάτων ότι γύρω στο 240 π.Χ. υπολόγισε την περιφέρεια της Γης.

4 Μια τυχαία παρατήρηση Μια μέρα, καθώς ο Ερατοσθένης μελετούσε ένα πάπυρο στη βιβλιοθήκη της Αλεξάνδρειας, διάβασε μια καταχώρηση η οποία του κέντρισε το ενδιαφέρον. Διάβασε, ότι στις 22 Ιουνίου την ημέρα δηλαδή του θερινού ηλιοστάσιου, στην πόλη Συήνη (το σημερινό Ασουάν) της Αιγύπτου, 800 περίπου χιλιόμετρα από την Αλεξάνδρεια συμβαίνει κάτι αξιοσημείωτο. Καθώς πλησιάζει το μεσημέρι οι σκιές των κιόνων ή μιας ράβδου μικραίνουν. Στις 12 το μεσημέρι όταν δηλαδή ο ήλιος βρίσκεται στο ζενίθ, οι σκιές εξαφανίζονταν τελείως και το νερό καθρεπτίζεται στο πάτο ενός πηγαδιού. Ο Ήλιος δηλαδή, βρισκόταν ακριβώς κάθετα πάνω από τη περιοχή. Τι το ιδιαίτερο είχε όμως αυτή η απλή παρατήρηση ώστε να τραβήξει το ενδιαφέρον του Ερατοσθένη; Μια μέρα, καθώς ο Ερατοσθένης μελετούσε ένα πάπυρο στη βιβλιοθήκη της Αλεξάνδρειας, διάβασε μια καταχώρηση η οποία του κέντρισε το ενδιαφέρον. Διάβασε, ότι στις 22 Ιουνίου την ημέρα δηλαδή του θερινού ηλιοστάσιου, στην πόλη Συήνη (το σημερινό Ασουάν) της Αιγύπτου, 800 περίπου χιλιόμετρα από την Αλεξάνδρεια συμβαίνει κάτι αξιοσημείωτο. Καθώς πλησιάζει το μεσημέρι οι σκιές των κιόνων ή μιας ράβδου μικραίνουν. Στις 12 το μεσημέρι όταν δηλαδή ο ήλιος βρίσκεται στο ζενίθ, οι σκιές εξαφανίζονταν τελείως και το νερό καθρεπτίζεται στο πάτο ενός πηγαδιού. Ο Ήλιος δηλαδή, βρισκόταν ακριβώς κάθετα πάνω από τη περιοχή. Τι το ιδιαίτερο είχε όμως αυτή η απλή παρατήρηση ώστε να τραβήξει το ενδιαφέρον του Ερατοσθένη;

5 Οι περισσότεροι άνθρωποι θα αδιαφορούσαν για μια τέτοιου είδους ασήμαντη, καθημερινή πληροφορία. Ο Ερατοσθένης όμως δεν ήταν ένας τυχαίος άνθρωπος. Ως γνήσιος ερευνητής αναρωτήθηκε, πως είναι δυνατόν την ίδια ακριβώς στιγμή μια ράβδος να μην έχει σκιά στη πόλη της Συήνης, ενώ 800 περίπου χιλιόμετρα πιο κάτω, στην Αλεξάνδρεια, μια ράβδος ίδιου ύψους να έχει σκιά; Οι περισσότεροι άνθρωποι θα αδιαφορούσαν για μια τέτοιου είδους ασήμαντη, καθημερινή πληροφορία. Ο Ερατοσθένης όμως δεν ήταν ένας τυχαίος άνθρωπος. Ως γνήσιος ερευνητής αναρωτήθηκε, πως είναι δυνατόν την ίδια ακριβώς στιγμή μια ράβδος να μην έχει σκιά στη πόλη της Συήνης, ενώ 800 περίπου χιλιόμετρα πιο κάτω, στην Αλεξάνδρεια, μια ράβδος ίδιου ύψους να έχει σκιά; Ο Ερατοσθένης σκέφτηκε ότι αν η Γη ήταν επίπεδη, τότε ο Ήλιος θα έριχνε τις ακτίνες του κάθετα και στις δυο πόλεις ταυτόχρονα υπό την ίδια γωνία. Συνεπώς καμία από τις δυο ράβδους δεν θα έπρεπε να έχει σκιά. Γενικότερα, αν η Γη ήταν επίπεδη, η σκιά στη Συήνη θα έπρεπε να έχει πάντα το ίδιο μήκος με αυτή στην Αλεξάνδρεια.

6 Ο Ερατοσθένης λοιπόν συμπέρανε ότι για να μην έχει καθόλου σκιά η ράβδος στη Συήνη, ενώ την ίδια στιγμή στην Αλεξάνδρεια μια άλλη ίδια ράβδος έχει σκιά, δεν μπορεί παρά να σημαίνει ότι η επιφάνεια της Γης δεν είναι επίπεδη αλλά καμπύλη. Μάλιστα όσο πιο μεγάλη η καμπύλη τόσο πιο μεγάλη η διαφορά ανάμεσα στα μήκη των σκιών. Ο Ερατοσθένης λοιπόν συμπέρανε ότι για να μην έχει καθόλου σκιά η ράβδος στη Συήνη, ενώ την ίδια στιγμή στην Αλεξάνδρεια μια άλλη ίδια ράβδος έχει σκιά, δεν μπορεί παρά να σημαίνει ότι η επιφάνεια της Γης δεν είναι επίπεδη αλλά καμπύλη. Μάλιστα όσο πιο μεγάλη η καμπύλη τόσο πιο μεγάλη η διαφορά ανάμεσα στα μήκη των σκιών.

7 Πίσω στην αρχή Πίσω στην αρχή Αρχική σελίδα Με μια απλή παρατήρηση ο Ερατοσθένης έφτασε στο συμπέρασμα ότι η Γη είναι σφαιρική και όχι επίπεδη. Μέτρησε μάλιστα το μήκος της σκιάς της ράβδου και από τη μέτρηση αυτή είδε ότι οι ακτίνες του ήλιου σχημάτιζαν με τη κάθετη ράβδο μια γωνία 7ο12' δηλαδή το 1/50 ενός πλήρους κύκλου. Aν προεκτείνουμε μάλιστα τις ράβδους στη Συήνη και την Αλεξάνδρεια προς το κέντρο της Γης βλέπουμε ότι η γωνιακή απόσταση μεταξύ των δυο πόλεων είναι 7ο 12'. Πως μετρησε την περίμετρο της γης

8 Ο Ερατοσθένης προσέλαβε βηματιστές που μέτρησαν την απόσταση μεταξύ της Αλεξάνδρειας και της Συήνης και τη βρήκαν 5000 στάδια. Αν η γωνία λοιπόν των 7ο 12' αντιστοιχούσε σε απόσταση 5000 στάδια, ο Ερατοσθένης με απλά μαθηματικά υπολόγισε ότι η περιφέρεια της Γης πρέπει να είναι στάδια δηλαδή χιλιόμετρα. Ο Ερατοσθένης με μόνα εργαλεία τη σκέψη του και μια ράβδο κατάφερε να μετρήσει χρόνια πριν τη περίμετρο της Γης με εντυπωσιακή ακρίβεια. Δεδομένου ότι η πραγματική τιμή της περιφέρειας της Γης στον Ισημερινό είναι χιλιόμετρα η απόκλιση των μόλις 385 χιλιομέτρων της μέτρησης του Ερατοσθένη από τη πραγματική τιμή είναι αξιοσημείωτη. Ο Ερατοσθένης προσέλαβε βηματιστές που μέτρησαν την απόσταση μεταξύ της Αλεξάνδρειας και της Συήνης και τη βρήκαν 5000 στάδια. Αν η γωνία λοιπόν των 7ο 12' αντιστοιχούσε σε απόσταση 5000 στάδια, ο Ερατοσθένης με απλά μαθηματικά υπολόγισε ότι η περιφέρεια της Γης πρέπει να είναι στάδια δηλαδή χιλιόμετρα. Ο Ερατοσθένης με μόνα εργαλεία τη σκέψη του και μια ράβδο κατάφερε να μετρήσει χρόνια πριν τη περίμετρο της Γης με εντυπωσιακή ακρίβεια. Δεδομένου ότι η πραγματική τιμή της περιφέρειας της Γης στον Ισημερινό είναι χιλιόμετρα η απόκλιση των μόλις 385 χιλιομέτρων της μέτρησης του Ερατοσθένη από τη πραγματική τιμή είναι αξιοσημείωτη.

9 Μπορούμε να κάνουμε το πείραμα και εμείς; Το πείραμα του Ερατοσθένη μπορεί να διεξαχθεί ανάμεσα σε δυο οποιεσδήποτε περιοχές. Σε κάθε περίπτωση αυτό που χρειάζεται να γνωρίζουμε είναι η γωνιακή απόσταση μεταξύ των δυο περιοχών καθώς και η απόστασή τους μετρημένη στον ίδιο μεσημβρινό. Δεδομένου ότι καμία από τις δυο περιοχές που θα χρησιμοποιήσουμε για τη δική μας μέτρηση δεν είναι η Συήνη, η μέτρηση της σκιάς της ράβδου θα πρέπει να γίνει και στις δυο περιοχές. Το πείραμα του Ερατοσθένη μπορεί να διεξαχθεί ανάμεσα σε δυο οποιεσδήποτε περιοχές. Σε κάθε περίπτωση αυτό που χρειάζεται να γνωρίζουμε είναι η γωνιακή απόσταση μεταξύ των δυο περιοχών καθώς και η απόστασή τους μετρημένη στον ίδιο μεσημβρινό. Δεδομένου ότι καμία από τις δυο περιοχές που θα χρησιμοποιήσουμε για τη δική μας μέτρηση δεν είναι η Συήνη, η μέτρηση της σκιάς της ράβδου θα πρέπει να γίνει και στις δυο περιοχές.

10 Και για τις δυο περιοχές θα βρούμε τη γωνία όπως έκανε και ο Ερατοσθένης και στη συνέχεια θα αφαιρέσουμε τις δυο γωνίες για να βρούμε τη γωνιακή απόσταση μεταξύ των περιοχών. Οι δυο μετρήσεις για τον υπολογισμό της γωνιακής απόστασης πρέπει να γίνουν την ίδια μέρα και κάτω από τις ίδιες συνθήκες δηλαδή όταν ο ήλιος βρίσκεται στο ζενίθ για κάθε περιοχή. Και για τις δυο περιοχές θα βρούμε τη γωνία όπως έκανε και ο Ερατοσθένης και στη συνέχεια θα αφαιρέσουμε τις δυο γωνίες για να βρούμε τη γωνιακή απόσταση μεταξύ των περιοχών. Οι δυο μετρήσεις για τον υπολογισμό της γωνιακής απόστασης πρέπει να γίνουν την ίδια μέρα και κάτω από τις ίδιες συνθήκες δηλαδή όταν ο ήλιος βρίσκεται στο ζενίθ για κάθε περιοχή.

11 Ο υπολογισμός αυτός γίνετε όπως τον έκανε και ο Ερατοσθένης πριν περίπου 2000 χρόνια. Τοποθετούμε μια ράβδο κάθετα στο έδαφος. Βρίσκουμε την ώρα που ο ήλιος βρίσκεται στο ζενίθ και εκείνη τη χρονική στιγμή μετράμε τη σκιά της. Όταν ο Ήλιος βρίσκεται στο ζενίθ η σκιά της ράβδου είναι η μικρότερη δυνατή. Μετράμε επίσης και το μήκος της ράβδου. Η ράβδος, η σκιά της και οι ακτίνες του Ήλιου σχηματίζουν ένα ορθογώνιο τρίγωνο. Η γωνία θ μεταξύ των ηλιακών ακτινών και της ράβδου είναι η γωνιακή απόσταση του τόπου από τον Ισημερινό. Ο υπολογισμός αυτός γίνετε όπως τον έκανε και ο Ερατοσθένης πριν περίπου 2000 χρόνια. Τοποθετούμε μια ράβδο κάθετα στο έδαφος. Βρίσκουμε την ώρα που ο ήλιος βρίσκεται στο ζενίθ και εκείνη τη χρονική στιγμή μετράμε τη σκιά της. Όταν ο Ήλιος βρίσκεται στο ζενίθ η σκιά της ράβδου είναι η μικρότερη δυνατή. Μετράμε επίσης και το μήκος της ράβδου. Η ράβδος, η σκιά της και οι ακτίνες του Ήλιου σχηματίζουν ένα ορθογώνιο τρίγωνο. Η γωνία θ μεταξύ των ηλιακών ακτινών και της ράβδου είναι η γωνιακή απόσταση του τόπου από τον Ισημερινό.

12 Η γωνία Δθ είναι η γωνιακή απόσταση μεταξύ των δυο περιοχών Στη συνέχεια μετράμε την απόσταση των δυο περιοχών πάνω στον ίδιο μεσημβρινό. γνωρίζοντας την γωνιακή και τη πραγματική απόσταση των δυο περιοχών με απλή μέθοδο των τριών, όπως και ο Ερατοσθένης υπολογίζουμε την περιφέρεια της Γης.

13 Τι κάναμε εμείς… Οι μαθητές του 6 ου γυμνασίου Κέρκυρας, την Παρασκευή 21 Μαρτίου 2014, υλοποίησαν το πείραμα του Ερατοσθένη, μετρώντας την σκιά μιας ράβδου μήκους ενός μέτρου, στην αυλή του σχολείου, την ώρα που ο ήλιος βρίσκεται στο ζενίθ. Οι μαθητές του 6 ου γυμνασίου Κέρκυρας, την Παρασκευή 21 Μαρτίου 2014, υλοποίησαν το πείραμα του Ερατοσθένη, μετρώντας την σκιά μιας ράβδου μήκους ενός μέτρου, στην αυλή του σχολείου, την ώρα που ο ήλιος βρίσκεται στο ζενίθ. Συγκεκριμένα σχηματίστηκαν 4 ομάδες με τους 4 εκπαιδευτικούς ως επιβλέποντες, στήθηκαν στην αυλή 4 θρανία με ορθοστάτες και μετροταινία και οι μαθητές έλαβαν φύλλο εργασίας όπου κατέγραψαν το μήκος της ράβδου ανά δίλεπτο. Με βάση τις τιμές που πήραν σχημάτισαν τη γραφική παράσταση και εξήγαγαν το ελάχιστο σημείο. Συγκεκριμένα σχηματίστηκαν 4 ομάδες με τους 4 εκπαιδευτικούς ως επιβλέποντες, στήθηκαν στην αυλή 4 θρανία με ορθοστάτες και μετροταινία και οι μαθητές έλαβαν φύλλο εργασίας όπου κατέγραψαν το μήκος της ράβδου ανά δίλεπτο. Με βάση τις τιμές που πήραν σχημάτισαν τη γραφική παράσταση και εξήγαγαν το ελάχιστο σημείο.

14 Από την μέση τιμή των μετρήσεων των ομάδων, εξήχθη μια τιμή η οποία καταχωρήθηκε στην πλατφόρμα του πειράματος ????, όπως οργανώθηκε από την Ελληνογερμανική Αγωγή στο οποίο συμμετείχαν σχολεία από την Ελλάδα και άλλες χώρες. Από την μέση τιμή των μετρήσεων των ομάδων, εξήχθη μια τιμή η οποία καταχωρήθηκε στην πλατφόρμα του πειράματος ????, όπως οργανώθηκε από την Ελληνογερμανική Αγωγή στο οποίο συμμετείχαν σχολεία από την Ελλάδα και άλλες χώρες. Η δική μας μέτρηση συγκρίθηκε με σημείο αναφοράς τον ισημερινό και η τιμή βρέθηκε πολύ κοντά στην πραγματική. Το σφάλμα των μετρήσεων μας ήταν πολύ μικρό, ικανοποιητικό της τάξης του 0,47% Η δική μας μέτρηση συγκρίθηκε με σημείο αναφοράς τον ισημερινό και η τιμή βρέθηκε πολύ κοντά στην πραγματική. Το σφάλμα των μετρήσεων μας ήταν πολύ μικρό, ικανοποιητικό της τάξης του 0,47%

15 Στην αυλή του σχολείου…

16 …οι μαθητές μετρούν…

17 …καταγράφουν τις τιμές….

18 …συνεργάζονται…

19 …ασκούν τις δεξιότητες τους, πράττουν και δημιουργούν…

20 …ολοκληρώνουν επιτυχώς την εργασία...


Κατέβασμα ppt "Το πείραμα του Ερατοσθένη 6 ο Γυμνάσιο Κέρκυρας Συμμετέχουν οι εκπαιδευτικοί ΠΕ04: Βλάχος Αθανάσιος, Γαστεράτου Μάγδα,Γαρνέλης Αντώνης, Μπούρος Μάριος."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google