Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Μπεττίνα Χάιδιτς Επίκουρη Καθηγήτρια Υγιεινής-Ιατρικής Στατιστικής

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "Μπεττίνα Χάιδιτς Επίκουρη Καθηγήτρια Υγιεινής-Ιατρικής Στατιστικής"— Μεταγράφημα παρουσίασης:

1 Μπεττίνα Χάιδιτς Επίκουρη Καθηγήτρια Υγιεινής-Ιατρικής Στατιστικής

2 Υπολογισμός μεγέθους δείγματος Πιο πολλές επιδημιολογικές μελέτες έχουν ως στόχο να εκτιμηθεί κάποιο χαρακτηριστικό του πληθυσμού ή μία σχέση. Ανάλογα με τη έκβαση της μελέτης, αυτό μπορεί να είναι ένα ποσοστό (επιπολασμός) ή μία διαφορά μεταξύ ομάδων Ένα βασικό ερώτημα που τίθεται, κατά το σχεδιασμό της μελέτης είναι «Πόσο μεγάλο θα πρέπει να το δείγμα της μελέτης, προκειμένου να ικανοποιήσει τους βασικούς στόχους της;»

3 Παραδείγματα Έλεγχος υπόθεσης Διερεύνηση της σχέσης μεταξύ της θεραπείας ορμονικής υποκατάστασης και της καρδιαγγειακής νόσου. Διερεύνηση του κάτα πόσο ο κίνδυνος της ελονοσίας θα μειωθεί με τη χρήση των εμποτισμένων κουνουπιέρων με εντομοκτόνα. Διερεύνηση της επίδρασης μιας νέας παρέμβασης στην συχνότητα εμφάνισης του καρκίνου του στομάχου.

4 Παραδείγματα Εκτίμηση μιας τιμής Τι ποσοστό του πληθυσμού της Ελλάδας καπνίζει σήμερα? Εκτίμηση του επιπολασμού της αναιμίας σε παιδιά κάτω των πέντε ετών.

5 Τυχαίο σφάλμα Σε επιδημιολογικές μελέτες, παίρνουμε ένα δείγμα για να εκτιμήσουμε την έκβαση που μας ενδιαφέρει τυχαίο σφάλμα (τυπικό σφάλμα) Μειώνει? Με τη αύξηση του μεγέθους του δείγματος!

6 Υπολογισμός μεγέθους δείγματος Επιλογή του κατάλληλου μεγέθους δείγματος είναι ένα σημαντικό βήμα για να επιβεβαιωθεί ότι πληρούνται οι στόχοι της μελέτης. Πολύ μικρή μελέτη αδυναμία στην ανίχνευση σημαντικών αποτελεσμάτων με ανακριβή εκτίμηση (με ευρεία διαστήματα εμπιστοσύνης). σπατάλη των πόρων. Ανήθικο να εγγραφούν άτομα σε μια μελέτη που δεν θα μπορεί να απαντήσει το ερευνητικό ερώτημα. Πολύ μεγάλη μελέτη χάσιμο χρόνου, χρημάτων και άλλων πόρων. Μειωμένες πιθανότητες για χρηματοδότηση.

7 Μερικές βασικές αρχές Οι εκτιμήσεις του μεγέθους δείγματος είναι προσεγγίσεις και χρησιμοποιούνται ως οδηγός κατά το σχεδιασμό μιας μελέτης. Διακρίνουν μεταξύ της ανάγκης για 100 ή 1000 άτομα, αλλά όχι μεταξύ των 100 και 103 άτομα. Οι τύποι για τον υπολογισμό του δείγματος στα περισσότερα βιβλία και στατιστικά προγράμματα προϋποθέτουν ότι ο τύπος δειγματοληψίας είναι η απλή τυχαία δειγματοληψία (δηλαδή δεν είναι δειγματοληψία κατά συστάδες ή διαστρωματωμένη δειγματοληψία). Συνήθως το μέγεθος του δείγματος θα πρέπει να αυξηθεί για άλλους τύπους δειγματοληψίας. Επίσης, θα πρέπει να αυξηθεί ανάλογα με την πολυπλοκότητα της ανάλυσης, για παράδειγμα, η ανάγκη ελέγχου για συγχυτικούς παράγοντες και αλληλεπιδράσεων.

8 Ισχύς της μελέτης Οι υπολογισμοί μεγέθους δείγματος βασίζονται στη στατιστική ισχύ που επιλέγεται για να εντοπιστεί μια επίδραση ή διαφορά. Η ισχύς της μελέτης είναι ένα μέτρο που δείχνει πόσο πιθανό είναι ότι ο έλεγχος των υποθέσεων (ή σημαντικότητας) θα καταλήξει με στατιστικά σημαντικό αποτέλεσμα το οποίο στην πραγματικότητα ισχύει. Για παράδειγμα, μια ισχύς της μελέτης 90% σημαίνει ότι αν επαναλαμβανόταν η μελέτη πολλές φορές, 9 στις 10 φορές θα κατέληγε σε στατιστικά σημαντικό αποτέλεσμα, δεδομένου ότι στην πραγματικότητα ισχύει το συγκεκριμένο αποτέλεσμα. Η απαιτούμενη ισχύς της μελέτης αποφασίζεται από πριν

9 9 Βασισμένη στο δείγμα η απόφαση είναι Απόρριψη μηδενικής υπόθεσης (στατ. σημαντικό) Μη απόρριψη μηδενικής υπόθεσης (μη στατ. σημαντικό) Στον πληθυσμό από όπου το δείγμα εξάγεται, η μηδενική υπόθεση είναι Αληθήςα=Σφάλμα τύπου Ι (επίπεδο σημαντικότητας) Σωστή απόφαση 1-α (Ψευδώς θετικό αποτέλεσμα) ΨευδήςΣωστή απόφαση (ισχύς ελέγχου) 1-β Σφάλμα τύπου ΙΙ Β (Ψευδώς αρνητικό αποτέλεσμα) Σφάλματα τύπου Ι και ΙΙ

10 Υπολογισμός μεγέθους δείγματος Ελαχιστοποίηση των δύο τύπων σφαλμάτων Κλινικά σημαντική διαφορά μεταξύ των ομάδων και να υπάρχει και στατιστικά σημαντική διαφορά μεταξύ τουςΙκανοποίηση Μη στατιστικά σημαντικά αποτελέσματα δεν υπάρχει πραγματική διαφορά μεταξύ των συγκρινόμενων ομάδων, ή υπάρχει μια πραγματική διαφορά, αλλά το συγκεκριμένο δείγμα δεν είχε την απαιτούμενη στατιστική ισχύ. Αποτελέσματα είναι ασαφή Σαφώς εάν σχεδιάσουμε μια μελέτη για να έχουν ένα υψηλό επίπεδο ισχύος και τα αποτελέσματα δεν είναι στατιστικά σημαντικά τότε μπορούμε να είμαστε περισσότερο βέβαιοι ότι αυτό συμβαίνει διότι δεν υπάρχει πραγματική διαφορά.

11 Υπολογισμός μεγέθους δείγματος N α, β Σφάλμα Τύπου Ι πιο σοβαρό από σφάλμα τύπου ΙΙ σφάλμα τύπου Ι = ψεύτικη δήλωση σφάλμα τύπου Ι Ι= ουδέτερη δήλωση α= 5%, υπάρχει μια 5% πιθανότητα ότι η παρατηρούμενη σχέση δεν υπάρχει στον πληθυσμό. Αυτό ονομάζεται το επίπεδο σημαντικότητας.

12 Ισχύς της μελέτης Περισσότερες μελέτες σχεδιάζονται με μια ισχύ ≥ 80% Το οποίο τι σημαίνει? Υπάρχει 20% πιθανότητα ότι η πραγματική διαφορά θα εντοπιστεί στη μελέτη Υπάρχει 20% πιθανότητα ότι η πραγματική διαφορά δεν θα εντοπιστεί

13 Υπολογισμός μεγέθους δείγματος Πρέπει να προσδιοριστεί: Το βασικό επίπεδο της νόσου Μελέτη ασθενών-μαρτύρων: Το ποσοστό των μαρτύρων που έχουν εκτεθεί στον παράγοντα κινδύνου Μελέτη κοόρτης: Το ποσοστό των ατόμων που έχουν τη νόσο και δεν έχουν εκτεθεί στο παράγοντα κινδύνου. Την ελάχιστη κλινική σημαντική διαφορά που θέλεις να εντοπίσεις Μελέτη ασθενών-μαρτύρων: OR Μελέτη κοόρτης: RR, RD Την ισχύ της μελέτης. 1-β = 80-90% Το επίπεδο σημαντικότητας α=5% Την αναλογία των ατόμων στις ομάδες σύγκρισης Π.χ. Ίδιος αριθμός ασθενών και μαρτύρων σε μια μελέτη ασθενών- μαρτύρων?

14 Διαφορά μέσων τιμών Sample size in each group (assumes equal sized groups) Represents the desired power (typically.84 for 80% power). Represents the desired level of statistical significance (typically 1.96). Standard deviation of the outcome variable Effect Size (the difference in means)

15 Nomograms (Altman)

16 Διαφορά ποσοστών Sample size in each group (assumes equal sized groups) Represents the desired power (typically.84 for 80% power). Represents the desired level of statistical significance (typically 1.96). A measure of variability (similar to standard deviation) Effect Size (the difference in proportions)

17 Ανάλυση επιβίωσης d=αριθμός περιστατικών Π.χ. Σχεδιάζουμε μία μελέτη με 2 ομάδες και θέλουμε να βρούμε μια αναλογία κινδύνου HR=1.5 με 90% ισχύ και 5% αμφίπλευρο επίπεδο σημαντικότητας. Απαιτούμενος αριθμός περιστατικών: 17

18 Απώλεια Ποσοστό απώλειας = r Ν* = Ν/ (1-r) Π.χ. Ποσοστό απώλειας = 30% Ν = 200 Ν* = 200 /(1-0.3) = 200/0.7 = 286 άτομα

19 OPENEPI tm

20 Παράδειγμα μελέτης κοόρτης we wish to detect a risk ratio of 1.5 the risk of disease in an unexposed population is 5% 90% power 5% level of significance equal numbers of exposed and non-exposed

21 Υπολογισμός μεγέθους δείγματος για μελέτες κοόρτης Total sample size required for given risk ratio and risk in the unexposed population Risk of disease in unexposed group Risk Ratio5%10%15% Όσο μεγαλώνει ο κίνδυνος, ΜΕΙΩΝΕΙ το μέγεθος δείγματος Όσο μεγαλώνει ο σχετικός κίνδυνος, ΜΕΙΩΝΕΙ το μέγεθος δείγματος

22 Υπολογισμός μεγέθους δείγματος για μελέτες ασθενών-μαρτύρων Total sample size required for given οdds ratio and percent of controls exposed Percentage of exposure in the control group Odds Ratio10%50%80% Απαιτείται πολύ μεγάλο δείγμα όταν η έκθεση σε έναν παράγοντα κινδύνου θεωρείται πολύ ΣΠΑΝΙΑ ή πολύ ΣΥΝΗΘΙΣΜΕΝΗ ή όταν ο λόγος σχετικών πιθανοτήτων είναι ΜΙΚΡΟΣ

23 All-purpose power formula…

24 Η ισχύς αυξάνει 1. Διαφορά 2. Τυπική απόκλιση 3. Μέγεθος δείγματος 4. Επίπεδο σημαντικότητας

25 Υπολογισμός ισχύος-Παράδειγμα Σχεδιάζεται μια μελέτη κοόρτης για τη διερεύνηση της χρήσης αντισυλληπτικών και του κινδύνου για υπέρταση: Η χρηματοδότηση επαρκεί μόνο για 200 άτομα σε κάθε ομάδα Ο σχετικός κίνδυνος αναμένεται να είναι περίπου 2.0 Από προηγούμενες μελέτες, ο κίνδυνος υπέρτασης εκτιμάται 10% σε άτομα που δεν έχουν εκτεθεί σε κάποιο παράγοντα κινδύνου.

26 OPENEPI

27

28 Παράδειγμα Σχεδιάζεται μια μελέτη ασθενών-μαρτύρων για τη διερεύνηση της σχέσης μεταξύ του καπνίσματος και της στεφανιαίας νόσου: Η χρηματοδότηση επαρκεί για να μελετηθούν 600 άτομα και γνωρίζεις ότι μπορείς να βρεις μόνο 200 ασθενείς με στεφανιαία νόσο Αναμένεται ο λόγος σχετικών πιθανοτήτων να είναι 1.8 Από προηγούμενες μελέτες, εκτιμάται πως η συχνότητα καπνίσματος είναι περίπου 35%. p2= (OR*p1)/[1+(OR-1)*p1] = 49% Ποια είναι η ισχύς με 200 ασθενείς και 200 μάρτυρες με 5% επίπεδο σημαντικότητας?

29

30

31 Πόσο αυξάνει η ισχύς αν έχεις το διπλάσιο αριθμό μαρτύρων σε σχέση με τους ασθενείς και συμπεριλάβεις τελικά 600 άτομα?

32 Ισχύς από 81% σε 91%

33 Ακρίβεια της μελέτης Ο υπολογισμός μεγέθους δείγματος προσδιορίζεται από το μέγεθος του τυχαίου σφάλματος που θεωρείται αποδεκτό Όσο πιο στενά τα διαστήματα εμπιστοσύνης τόσο μεγαλύτερη και η ακρίβεια (μειωμένο τυχαίο σφάλμα) Π.χ. OpenEpi(Proportion)

34 Άνισες ομάδες Για να επιτευχθεί ίδια ισχύ σε μελέτη με ίσες ομάδες: Το συνολικό μέγεθος δείγματος θα πρέπει να αυξηθεί n 1 = n (k+1)/2k Το μέγεθος της 2 ης ομάδας θα αυξηθεί n 2 =kn 1 Δεν έχει νόημα να αυξήσεις την αναλογία k > 3 ή 4 διότι μεγάλες αυξήσεις στο n 2 καταλήγει σε μικρές μειώσεις στο n 1

35 Πολλαπλές ομάδες Ο υπολογισμός μεγέθους δείγματος βασίζονται στη σύγκριση που σε ενδιαφέρει περισσότερο Μπορεί η μελέτη να μην έχει αρκετά μεγάλο μέγεθος δείγματος για να εντοπίσει διαφορές σε άλλες συγκρίσεις

36 Μελέτη κατά συστάδες Το απαιτούμενο μέγεθος δείγματος πρέπει να αυξηθεί διότι τα άτομα μέσα σε κάθε συστάδα θεωρούνται πιο όμοια απ΄ότι στις άλλες συστάδες Το αρχικό δείγμα πολλαπλασιάζεται με το: Design effect = 1 + (n’ - 1) * ΙCC n’ = μέσο μέγεθος κάθε συστάδας. ICC = Var (Between)/Total Variance Δοκιμάζεις διάφορες τιμές ICC

37 Tips Οι πιο πολλές μελέτες δεν έχουν ένα σκοπό, οπότε ένα μέγεθος δείγματος που είναι αρκετό για μια σύγκριση μπορεί να μην είναι αρκετό για άλλη σύγκριση. Στον υπολογισμό μεγέθους δείγματος επικεντρώνεσαι στις κύριες εκβάσεις. Μεγάλα δείγματα θεωρούνται άχρηστα αν δεν έχουν επιλεγεί σωστά (μεροληψία) Προτείνεται η αύξηση του υπολογισμένου δείγματος για να ληφθούν υπόψη οι απώλειες ή άλλοι παράγοντες που μπορεί να μειώσει το μέγεθος του δείγματος.

38 Tips Το μέγεθος του δείγματος θα πρέπει να αυξηθεί: Στην περίπτωση της τυχαιοποίησης κατά συστάδες ή διαστρωματωμένης τυχαιοποίησης Αν ο έλεγχος για συγχυτικούς παράγοντες θεωρείται απαραίτητος Συνήθως αύξηση κατά 20-25%

39 Χρήσιμη ιστοσελίδα!


Κατέβασμα ppt "Μπεττίνα Χάιδιτς Επίκουρη Καθηγήτρια Υγιεινής-Ιατρικής Στατιστικής"

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google