Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
ΔημοσίευσεHomeros Barba Τροποποιήθηκε πριν 11 χρόνια
3
iqAwr krqw sRI. srjMq isMG AiDAwpk - gixq srkwrI hweI skUl gVWgW KrV
4
AwE lMb c~krI SMkU bwry jwxIey
5
rojwnw jIvn iv~c vrqy jwx vwly lMb c~krwkwr SMkU topI rof ifvweIfr AweIskR Im kon
6
iehnW SMkU Awkwr vsqUAW dw AwDwr c~krwkwr hY Aqy auprlw jW hyTlw nOkIlw isrw kyvl ie~k ibMdU hY[ SMkU dw isKr O hY[ OA SMkU dI iqrCI au~cweI ( l ) OC SMkU dI lMb au~cweI ( h ) BC SMkU dw ArD ivAws ( r ) SMkU dw isKr O hY[ OA SMkU dI iqrCI au~cweI ( l ) OC SMkU dI lMb au~cweI ( h ) BC SMkU dw ArD ivAws ( r ) isKr C O h A l r B not: SMkU dI lMb aucweI Aqy iqrCI aucweI iv~c Prk smJo[
7
SMkU dI sqHw dw KyqrPl O h B l r A Sur U AM q 2 πr isKr O h A,C l r ie~k r, ArD ivAws kyNdr O vwly c~krwkwr kwgj dy tukVy ivcoN jy ie~k ArDivAwdI KMf OAB bxweIey Aqy ies nUM k~t ky isirAW OA Aqy OB nUM typ nwl joV id~qw jwvy qW SMkU dw Akwr bx jwvygw ijvyN ic~qr iv~c idKwieAw igAw hY[ c~kr dw ArD ivAws ( r ) SMkU dI iqrCI aucweI ( l ) bx jwvygw Aqy c~kr dw kyNdr ( O ) SMkU dw isKr bx jwvygw[ ie~k r, ArD ivAws kyNdr O vwly c~krwkwr kwgj dy tukVy ivcoN jy ie~k ArDivAwdI KMf O AB bxweIey Aqy ies nUM k~t ky isirAW O A Aqy OB nUM typ nwl joV id~qw jwvy qW SMkU dw Akwr bx jwvygw ijvyN ic~qr iv~c idKwieAw igAw hY[ c~kr dw ArD ivAws ( r ) SMkU dI iqrCI aucweI ( l ) bx jwvygw Aqy c~kr dw kyNdr ( O ) SMkU dw isKr bx jwvygw[
8
SMkU dI sqHw dw KyqrPl ikauNik SMkU, ArD ivAwsI KMf qoN bixAw hY[ ies leI = ies dw sUqr πr l huMdw hY[ ikauNik SMkU, ArD ivAwsI KMf qoN bixAw hY[ ies leI = ies dw sUqr πr l huMdw hY[ SMkU dI pwsvIN sqwH dw KyqrPl ArD ivAwsI KMf dw KyqrPl O h A l r
9
lMb c~krI SMkU dI iqrCI au~cweI, lMb au~cweI Aqy ArD ivAws iv~c sMbMD O A h B l r SMkU dI lMb au~cwe I SMkU dI iqrCI au~cwe I B O lMb ( h ) krx ( l ) AwDwr ( r ) A
10
lMb c~krI SMkU dI iqrCI au~cweI, lMb au~cweI Aqy ArD ivAws iv~c sMbMD pwieQwgors isDWq Anuswr smkoxI iqRBuk iv~c: (krx) 2 = (ADwr) 2 + (lMb) 2 ( l ) 2 = (r) 2 + (h) 2 smkoxI iqRBuj ivc AB 2 = OB 2 + OA 2 l 2 = r 2 + h 2 pwieQwgors isDWq Anuswr smkoxI iqRBuk iv~c: (krx) 2 = (ADwr) 2 + (lMb) 2 ( l ) 2 = (r) 2 + (h) 2 smkoxI iqRBuj ivc AB 2 = OB 2 + OA 2 l 2 = r 2 + h 2 SMkU dI iqrCI au~cweI
11
id~qy hoey ic~qr dw GxPl ic~qr iv~c lMb c~krI vyln, ijs dy AwDwr dw ArD-ivAws r Aqy h hY, dy au~pr SMkU aultw r~iKAw igAw hY, SMkU dy AwDwr dw ArD- ivAws r Aqy au~cweI h 1 hY[ ic~qr iv~c lMb c~krI vyln, ijs dy AwDwr dw ArD-ivAws r Aqy h hY, dy au~pr SMkU aultw r~iKAw igAw hY, SMkU dy AwDwr dw ArD- ivAws r Aqy au~cweI h 1 hY[ lMb c~krI vyln dw GxPl = π r2h lMb c~krI SMkU dw GxPl = pUry ic~qr dw GxPl = lMb c~krI vyln dw GxPl + lMb c~krI SMkU dw GxPl lMb c~krI vyln dw GxPl = π r2h lMb c~krI SMkU dw GxPl = pUry ic~qr dw GxPl = lMb c~krI vyln dw GxPl + lMb c~krI SMkU dw GxPl h1h1 r hh r
12
SMkU dw Awieqn (GxPl) 1)ie~k vylx (ArDivAws r Aqy aucweI h) Aqy iqMn SMkU lE ijhnW dw ArD ivAws Aqy aucweI vylx dy ArD ivAws Aqy aucweI dy brwbr hovy[ 2)iqMnW SMkUAW iv~c pwxI Br lE[ 3)iqMnW SMkUAW dw pwxI islMfr iv~c aultw idE[ islMfr pUrw Br jwvygw[ 1)ie~k vylx (ArDivAws r Aqy aucweI h ) Aqy iqMn SMkU lE ijhnW dw ArD ivAws Aqy aucweI vylx dy ArD ivAws Aqy aucweI dy brwbr hovy[ 2)iqMnW SMkUAW iv~c pwxI Br lE[ 3)iqMnW SMkUAW dw pwxI islMfr iv~c aultw idE[ islMfr pUrw Br jwvygw[ O r h O O r h O r h h r r
13
SMkU dw Awieqn (GxPl) vylx dw Awieqn = 3 x ie~k SMkU dw Awieqn SMkU dw Awieqn = x vylx dw Awieqn SMkU dw Awieqn = vylx dw Awieqn = 3 x ie~k SMkU dw Awieqn SMkU dw Awieqn = x vylx dw Awieqn SMkU dw Awieqn = h r r
14
SMkU dI rcnw kwgj dI SIt lE
15
SMkU dI rcnw ies iv`coN ie`k c`kr nMU k`t lE
16
SMkU dI rcnw l c~kr dw ArDivAwsI inSwn bxwE
17
l A SMkU dI rcnw l B ArDivAwsI KMf bxwE
18
SMkU dI rcnw ies ArD ivAwsI KMf nMU k`t lE O
19
SMkU dI rcnw c~kr dw k~itAw hoieAw ArDivAwsI KMf l A B l
20
SMkU dI rcnw l l O B,A ArDivAwsI KMf sy isirAW NnUM Awps iv~c joVn qy SMkU dw Awkwr bx igAw 1) kyNdr O vwly c~kr dw ArDivAws = SMkU dI iqrCI aucweI bx geI 2) kyNdr O vwly c~kr dw kyNdr = SMkU dw isKr bx igAw 1) kyNdr O vwly c~kr dw ArDivAws = SMkU dI iqrCI aucweI bx geI 2) kyNdr O vwly c~kr dw kyNdr = SMkU dw isKr bx igAw l A B l
21
SMkU dI rcnw r l O ies SMkU dw AwDwr r ArD ivAws vwlw c~kr hY[ SMkU dy AwDwr dw pirmwp = SMkU dy AwDwr dw KyqrPl = SMkU dI tyFI sqHw dw KyqrPl = l SMkU dy AwDwr dw pirmwp = SMkU dy AwDwr dw KyqrPl = SMkU dI tyFI sqHw dw KyqrPl = l
23
KwlI QW Bro: AiBAws 1. auprokq ic~qr iv~c________ SMkU dI lMb au~cweI hY[ 2. auprokq SMkU iv~c_________ SMkU dI iqrCI au~cweI hY[ 3. auprokq SMkU dw iSKr ______ hYY[ 4. SMkU dI tyFI sqHw dw KyqrPl = __________ N L O M r LM LO L
24
AiBAws 1.jy iksy SMkU dw ArDivAws 7 sY. mI. hovy Aqy lMb au~cweI 15 sY. mI. hovy qW GxPl = ______________ h 15 sY.mI. 7 sY.mI.
25
Aglw pRSn AiBAws 2. sMkU Akwr dy qMbU dy ADwr dw ArD ivAws 14 sYNN mI. qy iqrCI aucweI 10 sYN. mIN hY, iesdI tyFI sqHw dw KyqrPl pqw krx leI ikhVw suqr l~gygw? r = ______________ l = ______________ tyFI sqHw dw KyqrPl = _______________
26
ibblIEgRwPI 1. PlYS kwrf 2. pwT pusqk 3. ieMtrnYt: www.animationfactory.com
27
DMnv wd
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.