Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Factorial Analysis of Variance – Παραγοντική Ανάλυση Διακύμανσης

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "Factorial Analysis of Variance – Παραγοντική Ανάλυση Διακύμανσης"— Μεταγράφημα παρουσίασης:

1 Factorial Analysis of Variance – Παραγοντική Ανάλυση Διακύμανσης
Two-way ANOVA MANOVA ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος - Χατζηγεωργιάδης Αντώνης

2 Factorial Anova – Two way Anova
When? To analyze a situation in which there are two or more independent variables Specific name The specific names (e.g., two- way Anova) reflect the experimental design

3 Tests of group differences / Αναλύσεις για διαφορές ανάμεσα σε ομάδες
1 ανεξάρτητη μεταβλητή (δύο επίπεδα) – 1 εξαρτημένη  t-test ανεξάρτητα δείγματα 1 ανεξάρτητη μεταβλητή (3+ επίπεδα) – 1 εξαρτημένη  one-way ANOVA* 2 ανεξάρτητες μεταβλητές – 1 εξαρτημένη  two-way ANOVA 1 ανεξάρτητη μεταβλητή – 2 (ή περισσότερες εξαρτημένες)  one-way MANOVA 2 ανεξάρτητες μεταβλητές – 2 (ή περισσότερες) εξαρτημένες  two-way MANOVA Αριθμός ανεξάρτητων μεταβλητών Περισσότερες από 1 εξαρτημένες *one-way – μονόπλευρη two-way – δίπλευρη … - … ANOVA (Analysis of variance) – ανάλυση διακύμανσης (univariate – μονομεταβλητή) MANOVA (Multivariate analysis of variance)– πολυμεταβλητή ανάλυση διακύμανσης

4 1 ανεξάρτητη μεταβλητή (δύο επίπεδα) – 1 εξαρτημένη  t-test
Διαφορές στο ύψος ως προς το φύλο Φύλο (ανεξάρτητη - 2 επίπεδα) Ύψος (εξαρτημένη) Εκτελέστηκε t-test για ανεξάρτητα δείγματα για να εξεταστούν διαφορές στο ύψος ως προς το φύλο. Τα αποτελέσματα έδειξαν ότι …

5 1 ανεξάρτητη μεταβλητή (>2 επίπεδα) – 1 εξαρτημένη  one-way ANOVA
Διαφορές στο ύψος ως προς την τάξη Τάξη (ανεξάρτητη - 3 επίπεδα: 1η, 2α, 3η γυμνασίου) Ύψος (εξαρτημένη) Εκτελέστηκε μονόπλευρη ανάλυση διακύμανσης (one-way ANOVA) για να εξεταστούν διαφορές στο ύψος ανάμεσα σε μαθητές της πρώτης, δευτέρας και τρίτης γυμνασίου. Τα αποτελέσματα έδειξαν ότι …

6 2 ανεξάρτητες μεταβλητές – 1 εξαρτημένη  two-way ANOVA
Διαφορές στο ύψος ως προς την τάξη και το φύλο Τάξη (ανεξάρτητη - 3 επίπεδα: 1η, 2α, 3η γυμνασίου) Φύλο (ανεξάρτητη – 2 επίπεδα) Ύψος (εξαρτημένη) Εκτελέστηκε δίπλευρη (3 x 2) ανάλυση διακύμανσης (two-way ANOVA) για να εξεταστούν διαφορές στο ύψος ως προς την τάξη (1η, 2α, και 3η γυμνασίου) και το φύλο. Τα αποτελέσματα έδειξαν ότι …

7 1 ανεξάρτητη μεταβλητή – 2 (ή περισσότερες εξαρτημένες)  one-way MANOVA
Διαφορές στο ύψος και στο βάρος ως προς το φύλο Φύλο (ανεξάρτητη – 2 επίπεδα) Ύψος (εξαρτημένη) Βάρος (εξαρτημένη) Εκτελέστηκε μονόπλευρη πολυμεταβλητή ανάλυση διακύμανσης (one-way MANOVA) για να εξεταστούν διαφορές στο ύψος και στο βάρος ως προς το φύλο. Τα αποτελέσματα έδειξαν ότι …

8 2 ανεξάρτητες μεταβλητές – 2 (ή περισσότερες) εξαρτημένες  two-way MANOVA
Διαφορές στο ύψος και στο βάρος ως προς το φύλο και την τάξη Φύλο (ανεξάρτητη – 2 επίπεδα) Τάξη (ανεξάρτητη – 3 επίπεδα) Ύψος (εξαρτημένη) Βάρος (εξαρτημένη) Εκτελέστηκε δίπλευρη (2 x 3) πολυμεταβλητή ανάλυση διακύμανσης (two-way MANOVA) για να εξεταστούν διαφορές στο ύψος και στο βάρος ως προς το φύλο και την τάξη (1η, 2α, και 3η γυμνασίου). Τα αποτελέσματα έδειξαν ότι …

9 Παράδειγμα - δίπλευρη (2 x 2) ανάλυση διακύμανσης
Διερεύνηση της αποτελεσματικότητας διαφορετικών μεθόδων προπόνησης (PNF και παθητική) στην ευλυγισία αντρών και γυναικών Ερευνητικός Σχεδιασμός Παραγοντικός σχεδιασμός 2x2 = 4 δυνατοί συνδυασμοί -κελιά. Δυο ανεξάρτητες μεταβλητές (παράγοντες) κάθε μια από τις οποίες έχει δυο επίπεδα. Θα εξετάσουμε τις μεμονωμένες αλλά και την αλληλεπίδραση των δυο ανεξάρτητων μεταβλητών στην εξαρτημένη μας μεταβλητή.

10 Ερευνητικές ερωτήσεις του παραγοντικού σχεδιασμού
Κύρια επίδραση για το φύλο: Αυξάνουν οι άντρες περισσότερο από τις γυναίκες την ευλυγισία τους εξαιτίας της μεθόδου που χρησιμοποιούν; Κύρια επίδραση για τη προπονητική μέθοδο: Είναι η μέθοδος PNF αποτελεσματικότερη από την παθητική στην αύξηση της ευλυγισίας; Αλληλεπίδραση μεταξύ φύλου και μεθόδου προπόνησης: Εξαρτάται η αποτελεσματικότητα της μεθόδου προπόνησης (PNF και παθητική) από το αν ακολουθείται από άντρες ή γυναίκες;

11 Υποθέσεις του παραγοντικού σχεδιασμού Στην two-way (3 υποθέσεις) One-way (1)
Κύρια επίδραση για το φύλο: Ηο = Mmales = Mfemales Κύρια επίδραση για τη προπονητική μέθοδο: Ho = Mpnf = Mpassive Αλληλεπίδραση μεταξύ φύλου και μεθόδου προπόνησης: Ho = Mpnf + Mpassive, ΔΕΝ ΥΠΑΡΧΕΙ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΜΕΤΑΞΥ ΜΕΘΟΔΟΥ ΚΑΙ ΦΥΛΟΥ

12 Πριν προχωρήσουμε …Παραδείγματα πολυγώνων συχνότητας

13 Σχεδιασμός πολυγώνου συχνότητας

14 Προϋποθέσεις Τα δεδομένα σε κάθε ομάδα ακολουθούν την κανονική κατανομή (NORMALITY) Τα δυο δείγματα θα πρέπει να προέρχονται από πληθυσμούς με ίσες διακυμάνσεις (μέσος όρος των τετραγώνων των αποκλίσεων) (ομοιογένεια της διακύμανσης, homogeneity of variance), Leven Test (HOMOGENEITY)

15

16 Independent, e.g., Sex, method
Dependent, e.g., flexion Click ΟΚ

17 Σημείωση: Όταν το F στην αλληλεπίδραση είναι στατιστικά σημαντικό, πρέπει να εξηγήσουμε με προσοχή τις κύριες επιδράσεις ή καθόλου. Αν οι κύριες επιδράσεις είναι στατιστικά σημαντικές αλλά και η αλληλεπίδραση, μπορούμε να δώσουμε προσοχή μόνο στους μέσους όρους των κελιών και όχι στους μέσους όρους των κύριων επιδράσεων. P< .001

18 Πατάμε options

19

20

21 Για να εξετάσουμε αναλυτικά την αλληλεπίδραση
COMPARE (method) ADJ (SIDAK) COMPARE (sex) ADJ (SIDAK) Πατάμε Paste για να γράψουμε στο syntax Πατάω το βελάκι

22 Δεν υπάρχουν στατιστικά σημαντικές διαφορές

23 Δεν υπάρχουν στατιστικά σημαντικές διαφορές

24

25

26

27 Παράδειγμα - δίπλευρη (3 x 3) ανάλυση διακύμανσης
Διαφορές στην απόδοση σε ένα τεστ στο εργαστήριο κάτω από 3 διαφορετικές συνθήκες (KR-delay, 3-6-9sec) μεταξύ 3 διαφορετικών ηλικιακών κατηγοριών (7-11-adults)

28 Ερευνητικές ερωτήσεις
1) υπάρχει διαφορά στην απόδοση κάτω από τις 3 διαφορετικές συνθήκες? (κύρια επίδραση συνθήκης) 2)Υπάρχει διαφορά στην απόδοση ανάμεσα στις 3 διαφορετικές ηλικιακές ομάδες? (κύρια επίδραση ηλικιακής ομάδας) 3)Υπάρχει διαφορά στην απόδοση κάτω από τις 3 διαφορετικές συνθήκες για τις 3 ηλικιακές ομάδες? (αλληλεπίδραση συνθήκης και ηλικιακής ομάδας)

29

30 Πατάμε Plots Για να σχεδιάσουμε την αλληλεπίδραση 4 1 2 3

31 Πατάμε options Για να δούμε διαφορές μεταξύ των επιπέδων του κάθε παράγοντα 1 4 2 3 5

32 Γράφουμε… Πατάμε Paste για το syntax Τέλος πατάμε το βελάκι

33

34

35 Age* kr_delay

36

37 Παράδειγμα MANOVA Να εξεταστούν διαφορές στον προσανατολισμό στόχων και στο unfair-play ως προς το φύλο και την τάξη Δίπλευρη (2 ανεξάρτητες): φύλο – τάξη Πολυμεταβλητή: πολλές εξαρτημένες

38

39

40

41

42

43 F (5,151)= 6.41, p < .001

44 F (1,155) = 3.93, p <. 05)

45 Sex

46 Grade

47 Sex* grade (με syntax)

48 ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΓΓΡΑΦΗΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ
Two-way ANOVA σημαντική κυρίως επίδραση μη σημαντική αλληλεπίδραση Εκτελέστηκε δίπλευρη (2 x 2) ανάλυση διακύμανσης για να εξεταστούν διαφορές στον προσανατολισμό στό έργο ως προς το φύλο και την τάξη (5η και 6η δημοτικού). Τα αποτελέσματα έδειξαν στατιστικά σημαντική επίδραση για το φύλο, F (1,155) = 3.93, p < .05, μη σημαντική επίδραση για την τάξη, F (1,155) = 2.18, p = .14, και μη σημαντική αλληλεπίδραση φύλου και τάξης F (1,155) = 1.54, p = .22. Εξέταση των μέσων όρων έδειξε ότι τα κορίτσια είχαν υψηλότερα σκορ από τα αγόρια.

49 Two-way ANOVA μη σημαντική κυρίως επίδραση σημαντική αλληλεπίδραση
Εκτελέστηκε δίπλευρη (2 x 2) ανάλυση διακύμανσης για να εξεταστούν διαφορές στον προσανατολισμό στό εγώ ως προς το φύλο και την τάξη (5η και 6η δημοτικού). Τα αποτελέσματα έδειξαν μη στατιστικά σημαντική επίδραση για το φύλο, F (1,155) = 2.91, p = .09, μη σημαντική επίδραση για την τάξη, F (1,155) = .32, p = .57, αλλά στατιστικά σημαντική αλληλεπίδραση φύλου και τάξης, F (1,155) = 3.96, p < .05. Για την περαιτέρω ερμηνεία της αλληλεπίδρασης, ζευγαρωτές ανάλυση (pairwise analysis) ως προς το φύλο έδειξαν ότι ενώ στην 5η τάξη δεν υπήρχαν διαφορές ανάμεα στα αγόρια και στα κορίτσια, στην 6η τάξη τα αγόρια είχαν υψηλότερα σκορ από τα κορίτσια.

50 Two-way ANOVA σημαντική κυρίως επίδραση σημαντική αλληλεπίδραση
Εκτελέστηκε δίπλευρη (2 x 2) ανάλυση διακύμανσης για να εξεταστούν διαφορές στην εξαπάτηση ως προς το φύλο και την τάξη (5η και 6η δημοτικού). Τα αποτελέσματα έδειξαν στατιστικά σημαντική επίδραση για το φύλο, F (1,155) = 18.21, p < .01, και σημαντική επίδραση για την τάξη, F (1,155) = 21.48, p < .01. Ωστόσο, οι κύριες αυτές επιδράσεις καλύφθηκνα από τη σημαντική αλληλεπίδραση φύλου και τάξης, F (1,155) = 7.48, p < .01. Για την περαιτέρω ερμηνεία της αλληλεπίδρασης, ζευγαρωτές ανάλυση (pairwise analysis) ως προς το φύλο έδειξαν ότι ενώ στην 5η τάξη δεν υπήρχαν διαφορές ανάμεα στα αγόρια και στα κορίτσια, στην 6η τάξη τα αγόρια είχαν υψηλότερα σκορ από τα κορίτσια.

51 One-way MANOVA σημαντικές και μη σημαντικές κυρίως επιδράσεις
Εκτελέστηκε μονόπλευρη πολυμεταβλητή ανάλυση διακύμανσης (one-way MANOVA) για να εξεταστούν διαφορές στους προσανατολισμούς στόχων (προσανατολισμό στο έργο και προσνατολισμό στο εγώ) και στο unfair play (εξαπάτηση και κλέψιμο) ως προς το φύλο. Τα αποτελέσματα έδειξαν στατιστικά σημαντική πολυμεταβλητή επίδραση, F (4,154) = 6.46, p < .01. Εξέταση των μονομεταβλητών αναλύσεων, έδειξε στατιστικά σημαντική επίραση για την εξαπάτηση, F (1,157) = 14.06, p < .01, και το κλέψιμο, F (1,157) = 23.43, p < .01, και μη σημαντική επίδραση για τον προσανατολισμό στο έργο, F (1,157) = 3.58, p = .06, και τον προσανατολισμό στο εγώ, F (1,157) = 2.87, p = .09. Σχετικά με την εξαπάτηση και το κλέψιμο, εξέταση των μέσων όρων έδειξε ότι τα αγόρια είχαν υψηλότερα σκορ από τα κορίτσια.

52 Two-way MANOVA σημαντικές κυρίως επιδράσεις σημαντικές και μη σημαντικές αλληλεπιδράσεις
Εκτελέστηκε δίπλευρη πολυμεταβλητή ανάλυση διακύμανσης (two-way MANOVA) για να εξεταστούν διαφορές στο unfair play (εξαπάτηση και κλέψιμο) ως προς το φύλο και την τάξη (5η και 6η δημοτικού). Τα αποτελέσματα έδειξαν στατιστικά σημαντική πολυμεταβλητή επίδραση για το φύλο, F (2,154) = 14.78, p < .01, την τάξη, F (2,154) = 10.85, p < .01, αλλά και την αλληλεπίδραση φύλου και τάξης, F (2,154) = 3.75, p < .05. Εξέταση των μονομεταβλητών αναλύσεων, έδειξε στατιστικά σημαντική επίδραση του φύλου για την εξαπάτηση, F (1,155) = 18.21, p < .01, και το κλέψιμο, F (1,155) = 26.07, p < .01, σημαντική επίδραση της τάξης για την εξαπάτηση, F (1,155) = 21.50, p < .01, και το κλέψιμο, F (1,155) = 8.27, p < .01, και σημαντική αλληλεπίδραση φύλου και τάξης στην εξαπάτηση, F (1,155) = 7.46, p < .01, ενώ η αλληλεπίδραση φύλου και τάξης δεν ήταν σημαντική σγια το κλέψιμο, F (1,155) = 1.45, p = .10. Εξέταση των μέσων όρων έδειξε ότι τα αγόρια είχαν υψηλότερα σκορ από τα κορίτσια στην εξαπάτηση και το κλέψιμο και ότι τοι μαθητές της 6ης είχαν μεγαλύτερα σκορ από τους μαθητές της 5ης στην εξαπάτηση και το κλέψιμο. Ωστόσο, εξέταση της αλληλεπίδρασης για την εξαπάτηση ως προς το φύλο έδειξε ότι ενώ στην 5η τάξη τα αγόρια και τα κορίτσια δε διέφεραν, στην 6η τα αγόρια είχαν υψηλότερα σκορ απο τα κορίτσια.


Κατέβασμα ppt "Factorial Analysis of Variance – Παραγοντική Ανάλυση Διακύμανσης"

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google