Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
ΔημοσίευσεThera Minas Τροποποιήθηκε πριν 10 χρόνια
1
Ελεύθερος Αρμονικός Ταλαντωτής με απόσβεση F΄= −bυ
Προτάσεις υπέρβασης παρανοήσεων από το βιβλίο του Θρασύβουλου Μαχαίρα Παρουσίαση με την βοήθεια διερευνητικών δημουργιών του Σταύρου Λέτη Σταύρος Λέτης
2
εν αρχή ην … η διαφορική εξίσωση
Αν σε ένα σώμα μάζας m δρουν: δύναμη επαναφοράς F = − Dx (D>0) δύναμη απόσβεσης της μορφής F΄= − bυ (b>0) από τον 2ο νόμο του Νεύτωνα έχουμε: Σταύρος Λέτης
3
Σταύρος Λέτης
4
καταλήγουμε στη διαφορική εξίσωση
θέτοντας και ιδιοσυχνότητα του σώματος καταλήγουμε στη διαφορική εξίσωση Σταύρος Λέτης
5
Η προηγούμενη διαφορική εξίσωση είναι γραμμική ομογενής 2ας τάξεως
και έχει ως λύσεις τρεις τελείως διαφορετικές συναρτήσεις, (ανάλογα με τη σχέση που υπάρχει μεταξύ των παραμέτρων D, b και m). Κατά συνέπεια το υλικό σημείο μπορεί να εκτελέσει μια από τις παρακάτω τρεις τελείως διαφορετικές κινήσεις. Σταύρος Λέτης
6
1η κίνηση (με ισχυρή απόσβεση)
Όταν b2 > 4Dm, δηλαδή όταν Λ > ω0, λέμε ότι έχουμε ισχυρή απόσβεση και η εξίσωση κίνησης είναι: Σταύρος Λέτης
7
2η κίνηση (με κρίσιμη απόσβεση)
Όταν b2 = 4Dm, δηλαδή όταν Λ = ω0, λέμε ότι έχουμε κρίσιμη απόσβεση και η εξίσωση κίνησης είναι: Σταύρος Λέτης
8
3η κίνηση (με ασθενή απόσβεση)
Όταν b2 < 4Dm, δηλαδή όταν Λ < ω0, λέμε ότι έχουμε ασθενή απόσβεση και η εξίσωση κίνησης είναι: όπου και με 0 ≤ φ < 2π Σταύρος Λέτης
9
Ιδιαίτερο ενδιαφέρον παρουσιάζει η 3η κίνηση (με ασθενή απόσβεση) στην οποία το ταλαντούμενο σώμα περνά αρκετές φορές από τη θέση αναφοράς x = 0 πριν σταματήσει τελικά σε αυτή. Η κίνησή του όμως δεν επαναλαμβάνεται αναλλοίωτη, επομένως δεν είναι περιοδική και δεν είναι δυνατόν να χαρακτηρισθεί ταλάντωση με την έννοια που χρησιμοποιούμε για να περιγράψουμε την α.α.τ.. Πρέπει λοιπόν να επαναπροσδιορισθεί η έννοια περίοδος. Σταύρος Λέτης
10
περίοδος (επαναπροσδιορισμός της έννοιας)
Στην α.α.τ. περίοδος είναι το χρονικό διάστημα μετά την πάροδο του οποίου η κίνηση (η ταλάντωση) επαναλαμβάνεται αναλλοίωτη. Στην κίνηση με ασθενή απόσβεση, η οποία δεν επαναλαμβάνεται αναλλοίωτη, λέγοντας περίοδο θα εννοούμε το χρονικό διάστημα μεταξύ δύο διαδοχικών διελεύσεων του κινητού από τη θέση αναφοράς, με ταχύτητα της ίδιας κατεύθυνσης (το χρονικό αυτό διάστημα είναι σταθερό). Σταύρος Λέτης
11
Φθίνουσα επειδή η ενέργεια μειώνεται με τη πάροδο του χρόνου.
Μετά τον επαναπροσδιορισμό της έννοιας περίοδος, η κίνηση με ασθενή απόσβεση μπορεί να χαρακτηρισθεί φθίνουσα ταλάντωση. Ταλάντωση επειδή είναι μια παλινδρομική κίνηση εκατέρωθεν της θέσης αναφοράς x = 0 Φθίνουσα επειδή η ενέργεια μειώνεται με τη πάροδο του χρόνου. Σταύρος Λέτης
12
Σταύρος Λέτης
13
παρανοήσεις & υπερβάσεις
«Κάτι σάπιο υπάρχει στο βασίλειο της Δανιμαρκίας» πρίγκιπας Άμλετ απόσπασμα από την 4η σκηνή της 1ης πράξης του περίφημου έργου του Ουίλιαμ Σαίξπηρ «Άμλετ» Κάτι σάπιο υπάρχει και στη διδασκαλία των φθινουσών ταλαντώσεων (… και όχι μόνο σε αυτές) Σταύρος Λέτης
14
όταν η απόσβεση b είναι μικρή …
Η φθίνουσα ταλάντωση (κίνηση με ασθενή απόσβεση) πραγματοποιείται μόνο αν: Η φράση “μικρή απόσβεση” από μόνη της δεν έχει νόημα αφού η έννοια του μικρού είναι σχετική. Ερ: μικρή λοιπόν ως προς τι; Απ: ως προς τη ποσότητα Σταύρος Λέτης
15
περιβάλλουσες Η x1(t) = A0 e-Λt και η x2(t) = -A0 e-Λt είναι περιβάλλουσες της x(t) = A0 e-Λt ημ(ω1t+φ) δηλαδή οι γραφικές παραστάσεις των x1(t) και x2(t) για συγκεκριμένα b, m, D και A0, εφάπτονται της γραφικής παράστασης της απομάκρυνσης x(t), με τέτοιο τρόπο, ώστε καμιά τιμή της x να μη βρίσκεται έξω από το “χώρο” που οριοθετούν οι γραφικές παραστάσεις των x1(t) και x2(t) Σταύρος Λέτης
16
Σταύρος Λέτης
17
στις θέσεις +Α0 e–Λt έχει αρνητική ταχύτητα,
Στα σημεία επαφής της x(t) με τις x1(t) και x2(t) δηλαδή τις χρονικές στιγμές που το υλικό σημείο βρίσκεται σε θέσεις της μορφής x = ±Α0 e-Λt έχει ταχύτητα. στις θέσεις +Α0 e–Λt έχει αρνητική ταχύτητα, στις θέσεις –A0 e-Λt έχει θετική ταχύτητα. Άρα οι θέσεις αυτές δεν είναι ακραίες, δεν είναι θέσεις πλάτους και κατά συνέπεια η Α0 e–Λt δεν μπορεί να είναι συνάρτηση πλάτους. Σταύρος Λέτης
18
Σταύρος Λέτης
19
αν b2 = 2Dm οι καμπύλες ±Α0 e-Λt όχι μόνο δεν είναι θέσεις πλάτους, θέσεις δηλαδή μηδενισμού της ταχύτητας, αλλά τουναντίον θέσεις μέγιστου μέτρου ταχύτητας!!! Σταύρος Λέτης
20
Σταύρος Λέτης
21
θέσεις πλάτους Οι μέγιστες αποστάσεις (τοπικό ακρότατο) από τη θέση x = 0 στις οποίες μπορεί να βρεθεί το κινητό, οι αποστάσεις δηλαδή του κινητού από τη x = 0 όταν βρίσκεται στο πλάτος της ταλάντωσης, είναι Επειδή όμως ω1 < ω0 , το πλάτος της ταλάντωσης είναι σαφώς μικρότερο από τις τιμές που δίνουν οι περιβάλλουσες εκείνη τη χρονική στιγμή. Σταύρος Λέτης
22
Σταύρος Λέτης
23
θέσεις ισορροπίας (Θ.Ι.)
Στις θέσεις ισορροπίας το κινητό: έχει ταχύτητα μέγιστου μέτρου έχει επιτάχυνση μηδέν (Fολ = 0) πλησιάζει προς τη θέση x = 0 στις Θ.Ι. δεν περιλαμβάνεται ποτέ η θέση x = 0 σε κάθε περίοδο υπάρχουν δύο Θ.Ι. Σταύρος Λέτης
24
Σταύρος Λέτης
25
η ταχύτητα έχει μέγιστο μέτρο (τοπικό ακρότατο)
Στις θέσεις ισορροπίας οι οποίες είναι τα σημεία τομής της x(t) με τις συναρτήσεις η ταχύτητα έχει μέγιστο μέτρο (τοπικό ακρότατο) αν b2 = 2Dm οι θέσεις ισορροπίας του ταλαντωτή βρίσκονται στα σημεία επαφής της x(t) με τις περιβάλλουσες ±Α0 e-Λt Σταύρος Λέτης
26
Σταύρος Λέτης
27
Σώμα που έχει αρχική απομάκρυνση αφήνεται χωρίς αρχική ταχύτητα να εκτελέσει φθίνουσα ταλάντωση
Η αρχική απομάκρυνση x0 δεν είναι Α0 Η αρχική φάση φ δεν είναι π/2 rad Η εξίσωση κίνησης δεν είναι η x = A0 e-Λtσυν(ωt) Αν όλα αυτά ήταν σωστά, τότε το σώμα θα είχε ταχύτητα στη θέση πλάτους. Σταύρος Λέτης
28
Η δυναμική ενέργεια Σταύρος Λέτης
29
Η κινητική ενέργεια Σταύρος Λέτης
30
κινητική ενέργεια και δυναμική ενέργεια
Όταν η κινητική ενέργεια γίνεται μέγιστη (στις Θ.Ι.), η δυναμική ενέργεια δεν είναι μηδέν. Όταν η δυναμική ενέργεια είναι μέγιστη (ακραίες θέσεις), η κινητική ενέργεια είναι μηδέν. Σταύρος Λέτης
31
Σταύρος Λέτης
32
Η σχέση Ε = Ε0 e-2Λt δεν δίνει την (ολική) ενέργεια στη φθίνουσα ταλάντωση
Στις ακραίες θέσεις ο ρυθμός μεταβολής της ενέργειας πρέπει να είναι μηδέν (δηλαδή η εφαπτόμενη στη γρ.παρ. να είναι παράλληλη με τον άξονα των χρόνων). Ο στιγμιαίος ρυθμός με τον οποίο χάνει ενέργεια το σώμα (η ισχύς της F’) πρέπει να μηδενίζεται στις ακραίες θέσεις στις οποίες μηδενίζεται η ταχύτητα. Κάτι τέτοιο όμως δεν συμβαίνει με την εκθετική συνάρτηση. Σταύρος Λέτης
33
Σταύρος Λέτης
34
Σταύρος Λέτης
35
Η ολική ενέργεια στη φθίνουσα ταλάντωση δίνεται από τη σχέση
Σταύρος Λέτης
36
Σταύρος Λέτης
37
Ρυθμοί ενέργειας Ο ρυθμός μεταβολής της δυναμικής ενέργειας έχει θετικές και αρνητικές τιμές. Μηδενίζεται στις ακραίες θέσεις αλλά και στις θέσεις x = 0. Ο ρυθμός μεταβολής της κινητικής ενέργειας έχει θετικές και αρνητικές τιμές. Μηδενίζεται στις θέσεις ισορροπίας και στις ακραίες θέσεις. Ο ρυθμός μεταβολής της ενέργειας έχει μόνο αρνητικές τιμές (εφόσον η ενέργεια μειώνεται συνεχώς). Μηδενίζεται στις ακραίες θέσεις και γίνεται μέγιστος στις θέσεις ισορροπίας. Σταύρος Λέτης
38
Σας ευχαριστώ που ήρθατε αλλά … και για την προσοχή σας.
Σταύρος Λέτης
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.