Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
ΔημοσίευσεUtami Agusalim Τροποποιήθηκε πριν 6 χρόνια
1
5.5 – Multiple-Angle and Product-to-Sum Identities
Part 2
2
Half-Angle Identities
3
Half-Angle Identities
sin Ɵ 2 = ± 1 − cos Ɵ 2
4
Half-Angle Identities
sin Ɵ 2 = ± 1 − cos Ɵ cos Ɵ 2 = ± cos Ɵ 2
5
Half-Angle Identities
sin Ɵ 2 = ± 1 − cos Ɵ 2 cos Ɵ 2 = ± 1+ cos Ɵ 2 tan Ɵ 2 = ± 1 − cos Ɵ 1+ cos Ɵ
6
Half-Angle Identities
sin Ɵ 2 = ± 1 − cos Ɵ 2 cos Ɵ 2 = ± 1+ cos Ɵ 2 tan Ɵ 2 = ± 1 − cos Ɵ 1+ cos Ɵ tan Ɵ 2 = 1 − cos Ɵ sin Ɵ
7
Half-Angle Identities
sin Ɵ 2 = ± 1 − cos Ɵ 2 cos Ɵ 2 = ± 1+ cos Ɵ 2 tan Ɵ 2 = ± 1 − cos Ɵ 1+ cos Ɵ tan Ɵ 2 = 1 − cos Ɵ sin Ɵ tan Ɵ 2 = sin Ɵ 1 + cos Ɵ
8
Ex. 1 Find the exact value of tan 7π 12
9
Ex. 1 Find the exact value of tan 7π 12 tan 7π 6 2
10
Ex. 1 Find the exact value of tan 7π 12 tan 7π 6 2 tan Ɵ 𝟐 = 𝐬𝐢𝐧 Ɵ 𝟏 + 𝐜𝐨𝐬 Ɵ
11
Ex. 1 Find the exact value of tan 7π 12 tan 7π 6 2 tan Ɵ 𝟐 = 𝐬𝐢𝐧 Ɵ 𝟏 + 𝐜𝐨𝐬 Ɵ sin 7π 6 1 + cos 7π 6
12
Ex. 1 Find the exact value of tan 7π 12 tan 7π 6 2 tan Ɵ 𝟐 = 𝐬𝐢𝐧 Ɵ 𝟏 + 𝐜𝐨𝐬 Ɵ sin 7π cos 7π 6 − − 3 2
13
Ex. 1 Find the exact value of tan 7π 12 tan 7π 6 2 tan Ɵ 𝟐 = 𝐬𝐢𝐧 Ɵ 𝟏 + 𝐜𝐨𝐬 Ɵ sin 7π cos 7π 6 − − 3 2 = − − 3 2
14
Ex. 1 Find the exact value of tan 7π 12 tan 7π 6 2 tan Ɵ 𝟐 = 𝐬𝐢𝐧 Ɵ 𝟏 + 𝐜𝐨𝐬 Ɵ sin 7π cos 7π 6 − − 3 2 = − − 3 2 = − 1 2 · 2 2 − 3
15
Ex. 1 Find the exact value of tan 7π 12 tan 7π 6 2 tan Ɵ 𝟐 = 𝐬𝐢𝐧 Ɵ 𝟏 + 𝐜𝐨𝐬 Ɵ sin 7π cos 7π 6 − − 3 2 = − − 3 2 = − 1 2 · 2 2 − 3 = 1 2 − 3
16
Ex. 1 Find the exact value of tan 7π 12 tan 7π 6 2 tan Ɵ 𝟐 = 𝐬𝐢𝐧 Ɵ 𝟏 + 𝐜𝐨𝐬 Ɵ sin 7π cos 7π 6 − − 3 2 = − − 3 2 = − 1 2 · 2 2 − 3 = 1 2 − 3 = -2 − 3
17
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π).
18
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π)
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π). 2 ± 1 − cos 𝑥 cos x = 1 + sin x
19
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π)
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π). 2 ± 1 − cos 𝑥 cos x = 1 + sin x 2 · 1 − cos 𝑥 2 + cos x = 1 + sin x
20
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π)
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π). 2 ± 1 − cos 𝑥 cos x = 1 + sin x 2 · 1 − cos 𝑥 2 + cos x = 1 + sin x 1 − cos 𝑥 + cos x = 1 + sin x
21
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π)
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π). 2 ± 1 − cos 𝑥 cos x = 1 + sin x 2 · 1 − cos 𝑥 2 + cos x = 1 + sin x 1 − cos 𝑥 + cos x = 1 + sin x sin x = 0
22
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π)
Ex. 2 Solve 2 sin 2 𝑥 2 + cos x = 1 + sin x on [0, 2π). 2 ± 1 − cos 𝑥 cos x = 1 + sin x 2 · 1 − cos 𝑥 2 + cos x = 1 + sin x 1 − cos 𝑥 + cos x = 1 + sin x sin x = 0 x = 0 and π
23
Product-to-Sum Identities
24
Product-to-Sum Identities
sin α sin β = ½[cos(α – β) – cos(α + β)]
25
Product-to-Sum Identities
sin α sin β = ½[cos(α – β) – cos(α + β)] cos α cos β = ½[cos(α – β) + cos(α + β)]
26
Product-to-Sum Identities
sin α sin β = ½[cos(α – β) – cos(α + β)] cos α cos β = ½[cos(α – β) + cos(α + β)] sin α cos β = ½[sin(α + β) + sin(α – β)]
27
Product-to-Sum Identities
sin α sin β = ½[cos(α – β) – cos(α + β)] cos α cos β = ½[cos(α – β) + cos(α + β)] sin α cos β = ½[sin(α + β) + sin(α – β)] cos α sin β = ½[sin(α + β) – sin(α – β)]
28
Sum-to-Product Identities
29
Sum-to-Product Identities
sin α + sin β = 2 sin α+ β 2 cos α – β 2
30
Sum-to-Product Identities
sin α + sin β = 2 sin α+ β 2 cos α – β 2 sin α – sin β = 2 cos α+ β 2 sin α – β 2
31
Sum-to-Product Identities
sin α + sin β = 2 sin α+ β 2 cos α – β 2 sin α – sin β = 2 cos α+ β 2 sin α – β 2 cos α + cos β = 2 cos α+ β 2 cos α – β 2
32
Sum-to-Product Identities
sin α + sin β = 2 sin α+ β 2 cos α – β 2 sin α – sin β = 2 cos α+ β 2 sin α – β 2 cos α + cos β = 2 cos α+ β 2 cos α – β 2 cos α – cos β = -2 sin α+ β 2 sin α – β 2
33
Ex. 3 Find the exact value of cos 7π 12 – cos π 12
34
Ex. 3 Find the exact value of cos 7π 12 – cos π 12 cos α – cos β = -2 sin 𝜶+ 𝜷 𝟐 sin 𝜶 – 𝜷 𝟐
35
Ex. 3 Find the exact value of cos 7π 12 – cos π 12 cos α – cos β = -2 sin 𝜶+ 𝜷 𝟐 sin 𝜶 – 𝜷 𝟐 = -2 sin 7π 12 + π 12 2 sin 7π 12 – π 12 2
36
Ex. 3 Find the exact value of cos 7π 12 – cos π 12 cos α – cos β = -2 sin 𝜶+ 𝜷 𝟐 sin 𝜶 – 𝜷 𝟐 = -2 sin 7π 12 + π 12 2 sin 7π 12 – π 12 2 = -2 sin 2π 3 2 sin π 2 2
37
Ex. 3 Find the exact value of cos 7π 12 – cos π 12 cos α – cos β = -2 sin 𝜶+ 𝜷 𝟐 sin 𝜶 – 𝜷 𝟐 = -2 sin 7π 12 + π 12 2 sin 7π 12 – π 12 2 = -2 sin 2π 3 2 sin π 2 2 = -2 sin π 3 sin π 4
38
Ex. 3 Find the exact value of cos 7π 12 – cos π 12 cos α – cos β = -2 sin 𝜶+ 𝜷 𝟐 sin 𝜶 – 𝜷 𝟐 = -2 sin 7π 12 + π 12 2 sin 7π 12 – π 12 2 = -2 sin 2π 3 2 sin π 2 2 = -2 sin π 3 sin π 4 = -2( 3 2 )( 2 2 )
39
Ex. 3 Find the exact value of cos 7π 12 – cos π 12 cos α – cos β = -2 sin 𝜶+ 𝜷 𝟐 sin 𝜶 – 𝜷 𝟐 = -2 sin 7π 12 + π 12 2 sin 7π 12 – π 12 2 = -2 sin 2π 3 2 sin π 2 2 = -2 sin π 3 sin π 4 = -2( 3 2 )( 2 2 ) = - 6 2
40
Ex. 4 Solve sin x + sin 5x = 0
41
Ex. 4 Solve sin x + sin 5x = 0 sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐
42
Ex. 4 Solve sin x + sin 5x = 0 sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐 2 sin 𝑥 + 5𝑥 2 cos 𝑥 – 5𝑥 2 = 0
43
Ex. 4 Solve sin x + sin 5x = 0 sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐 2 sin 𝑥 + 5𝑥 2 cos 𝑥 – 5𝑥 2 = 0 2 sin 3x cos -2x = 0
44
Ex. 4 Solve sin x + sin 5x = 0 sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐 2 sin 𝑥 + 5𝑥 2 cos 𝑥 – 5𝑥 2 = 0 2 sin 3x cos -2x = 0 2 sin 3x cos 2x = 0
45
Ex. 4 Solve sin x + sin 5x = 0 sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐 2 sin 𝑥 + 5𝑥 2 cos 𝑥 – 5𝑥 2 = 0 2 sin 3x cos -2x = 0 2 sin 3x cos 2x = 0 sin 3x cos 2x = 0
46
Ex. 4 Solve sin x + sin 5x = 0 sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐 2 sin 𝑥 + 5𝑥 2 cos 𝑥 – 5𝑥 2 = 0 2 sin 3x cos -2x = 0 2 sin 3x cos 2x = 0 sin 3x cos 2x = 0 sin 3x = 0 cos 2x = 0
47
sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐
Ex. 4 Solve sin x + sin 5x = 0 sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐 2 sin 𝑥 + 5𝑥 2 cos 𝑥 – 5𝑥 2 = 0 2 sin 3x cos -2x = 0 2 sin 3x cos 2x = 0 sin 3x cos 2x = 0 sin 3x = 0 cos 2x = 0 3x = 0 + 2nπ and π + 2nπ
48
sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐
Ex. 4 Solve sin x + sin 5x = 0 sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐 2 sin 𝑥 + 5𝑥 2 cos 𝑥 – 5𝑥 2 = 0 2 sin 3x cos -2x = 0 2 sin 3x cos 2x = 0 sin 3x cos 2x = 0 sin 3x = 0 cos 2x = 0 3x = 0 + 2nπ and π + 2nπ x = π nπ and 3π nπ
49
sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐
Ex. 4 Solve sin x + sin 5x = 0 sin α + sin β = 2 sin 𝜶+ 𝜷 𝟐 cos 𝜶 – 𝜷 𝟐 2 sin 𝑥 + 5𝑥 2 cos 𝑥 – 5𝑥 2 = 0 2 sin 3x cos -2x = 0 2 sin 3x cos 2x = 0 sin 3x cos 2x = 0 sin 3x = 0 cos 2x = 0 3x = 0 + 2nπ and π + 2nπ x = π nπ and 3π nπ x = 2𝑛π 3 ; π 𝑛π 3 ; π 4 + nπ ; 3π 4 + nπ
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.