ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Copyright © 2005 Elsevier Κεφάλαιο 2 :: Σύνταξη των γλωσσών προγραμματισμού Πραγματολογία των Γλωσσών Προγραμματισμού Michael L. Scott.
Advertisements

ΓΡΑΜΜΑΤΙΚΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ I
ΘΕΩΡΙΑ ΓΛΩΣΣΩΝ & ΑΥΤΟΜΑΤΩΝ: ΕΙΣΑΓΩΓΗ Ι
Διαδικασία ανάπτυξης Προσδιορισμός απαιτήσεων Αρχιτεκτονικός Σχεδιασμός Λεπτομερής Σχεδιασμός Κωδικοποίηση Έλεγχος Παράδοση Συστήματος Λειτουργία - Συντήρηση.
ΣΤΟΙΧΕΙΑ ΨΕΥΔΟΚΩΔΙΚΑ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΒΑΣΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΙΝΑΚΩΝ
Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού
ΘΠ06 - Μεταγλωττιστές Πίνακας Συμβόλων, Σημασιολογικές Ενέργειες.
Κεφάλαιο 2ο Πεπερασμένα αυτόματα.
ΘΠ06 - Μεταγλωττιστές Πίνακας Συμβόλων. Πίνακας Συμβόλων (Symbol Table) (Ι)  Είναι μια δομή στην οποία αποθηκεύονται τα ονόματα ενός προγράμματος και.
24 Νοεμβρίου 2014 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΠΡΟΔΙΑΓΡΑΦΗ ΙΔΙΟΤΗΤΩΝ ΜΕ ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ.
Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ» Β΄ τάξης Γενικού Λυκείου
Η ΓΛΩΣΣΑ C ΜΑΘΗΜΑ 2.
Σχεδίαση αλγορίθμων (2ο μέρος)
ΕΠΛ Θεωρία και Πρακτική Μεταγλωττιστών5-1 Επίλυσης ασάφειας με εισαγωγή μη-τερματικών Π.χ. stmt = “if”, expr, “then”, stmt | “if”, expr, “then”,
Κεφ.1 Εισαγωγη στην εννοια του Αλγοριθμου και στον Προγραμματισμο
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Δευτέρα, 12 Ιανουαρίου 2015Δευτέρα, 12 Ιανουαρίου 2015Δευτέρα, 12 Ιανουαρίου 2015Δευτέρα, 12 Ιανουαρίου.
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι12-1 Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ο αλγόριθμος του Prim και ο αλγόριθμος του Kruskal.
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 2: ΘΕΜΑΤΑ ΘΕΩΡΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Η/Υ
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Δευτέρα, 30 Μαρτίου 2015Δευτέρα, 30 Μαρτίου 2015Δευτέρα, 30 Μαρτίου 2015Δευτέρα, 30 Μαρτίου 2015Τμ. Πληροφορικής,
Σημασιολογική ανάλυση Ι
ΘΠ06 - Μεταγλωττιστές Εισαγωγή στον Bison Φροντιστήριο - 30/03/2009.
Ενότητα Α.4. Δομημένος Προγραμματισμός
Γραμματικές Ι Τμ. Πληροφορικής, Α.Π.Θ. Κυριακή, 9 Απριλίου 2017.
ΘΠ06 - Μεταγλωττιστές Συντακτική Ανάλυση, Bison 1.
ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Π. ΚΑΤΣΑΡΟΣ Τρίτη, 31 Μαρτίου 2015Τρίτη, 31 Μαρτίου 2015Τρίτη, 31 Μαρτίου 2015Τρίτη, 31 Μαρτίου 2015Τμ. Πληροφορικής,
31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι Για τον προτασιακό.
ΝΤΕΝΤΕΡΜΙΝΙΣΤΙΚΑ ΠΕΠΕΡΑΣΜΕΝΑ ΑΥΤΟΜΑΤΑ Ι
ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Τετάρτη, 1 Απριλίου 2015Τετάρτη, 1 Απριλίου 2015Τετάρτη, 1 Απριλίου 2015Τετάρτη, 1 Απριλίου 2015Τμ. Πληροφορικής,
Αλγόριθμοι 2.1.1,
ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Π. ΚΑΤΣΑΡΟΣ Τετάρτη, 1 Απριλίου 2015Τετάρτη, 1 Απριλίου 2015Τετάρτη, 1 Απριλίου 2015Τετάρτη, 1 Απριλίου 2015Τμ. Πληροφορικής,
1.5 Γλώσσες Προγραμματισμού
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 2 Απριλίου 2015Πέμπτη, 2 Απριλίου 2015Πέμπτη, 2 Απριλίου 2015Πέμπτη, 2 Απριλίου 2015Τμ. Πληροφορικής,
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών – Τμήμα Πληροφορικής και Τηλεπικοινωνιών 1 Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Προπτυχιακό.
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Τμ.
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 2: ΘΕΜΑΤΑ ΘΕΩΡΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Η/Υ
ΘΠ06 - Μεταγλωττιστές Εισαγωγή στον Bison Φροντιστήριο - 23/03/2010.
Μεταγλωττιστές (Compilers) (Θ) Ενότητα 9: Παραγωγή Ενδιάμεσου Κώδικα (Ενδιάμεσες Γλώσσες) Κατερίνα Γεωργούλη Τμήμα Μηχανικών Πληροφορικής ΤΕ Ανοικτά Ακαδημαϊκά.
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών – Τμήμα Πληροφορικής και Τηλεπικοινωνιών 1 Κεφάλαιο 4 Σημασιολογία μιας Απλής Προστακτικής Γλώσσας Προπτυχιακό.
ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Τρίτη, 14 Απριλίου 2015Τρίτη, 14 Απριλίου 2015Τρίτη, 14 Απριλίου 2015Τρίτη, 14 Απριλίου 2015Τμ.
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Τετάρτη, 15 Απριλίου 2015Τετάρτη, 15 Απριλίου 2015Τετάρτη, 15 Απριλίου 2015Τετάρτη, 15 Απριλίου 2015Τμ.
Χρονική Πολυπλοκότητα και Μοντέλα
Μεταγλωττιστές (Compilers) (Θ) Ενότητα 13: Επαναληπτικό μάθημα Κατερίνα Γεωργούλη Τμήμα Μηχανικών Πληροφορικής ΤΕ Το περιεχόμενο του μαθήματος διατίθεται.
Μεταγλωττιστές (Compilers) (Θ) Ενότητα 8: Πίνακας Συμβόλων Κατερίνα Γεωργούλη Τμήμα Μηχανικών Πληροφορικής ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας.
Κεφάλαιο 10 – Υποπρογράμματα
Περιεχόμενα Μαθήματος
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι 4-1 Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Αναδρομικές συναρτήσεις Ισοζυγισμός Παρενθέσεων.
Διαγνώσιμες και μη-διαγνώσιμες ασυμφραστικές γραμματικές και γλώσσες
Βασικά στοιχεία της Java
ΗΥ150 – ΠρογραμματισμόςΚώστας Παναγιωτάκης ΗΥ-150 Προγραμματισμός Τύποι Μεταβλητών Τελεστές Βασική Είσοδος/Έξοδος.
ΚΕΦΑΛΑΙΟ Το αλφάβητο της ΓΛΩΣΣΑΣ
Εισαγωγή στην Έννοια του Αλγορίθμου και στον Προγραμματισμό
Γλώσσες Προγραμματισμού Μεταγλωττιστές Πίνακας Συμβόλων Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου.
Γλώσσες Προγραμματισμού Μεταγλωττιστές Συντακτική Ανάλυση II Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου.
Για μτ από ατ μέχρι ττ [με_βήμα β] εντολές Τέλος_επανάληψης : περιοχή εντολών μτ : η μεταβλητή της οποίας η τιμή θα περάσει από την αρχική.
Θεωρία υπολογισμού1 Μη αιτιοκρατικό αυτόματο Σ={0}, L = { 0 k : k=2m, k=3m}, μαντεύουμε το μήκος.
Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα:
Επίλυση Προβλημάτων με Αναζήτηση
ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΒΛΗΜΑ ΑΛΓΟΡΙΘΜΟΣ ΛΥΣΗ
Μοντελοποίηση υπολογισμού
Κεφάλαιο 4 :: Σημασιολογική Ανάλυση
Λήμμα άντλησης Πως αποφασίζουμε αποδεικνύουμε ότι μία γλώσσα δεν είναι κανονική; Δυσκολότερο από την απόδειξη ότι μια γλώσσα είναι κανονική. Γενικότερο.
Αρχεσ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ ΤΑξη Β΄
Ισοδυναμία ΠΑ - ΚΕ Για να δείξουμε ότι οι κανονικές γλώσσες - εκφράσεις και τα πεπερασμένα αυτόματα είναι ισοδύναμα σε εκφραστική δυνατότητα έχουμε να.
Οι διάφορες εκδοχές της
Ισοδυναμία ΜΠΑ με ΠΑ Για κάθε ΜΠΑ Μ υπάρχει αλγόριθμος ο οποίος κατασκευάζει ΠΑ Μ’ αιτιοκρατικό ώστε να αναγνωρίζουν την ίδια ακριβώς γλώσσα. Καθώς το.
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΑΕΠΠ
Β.ΕΠΑΛ-Γενικής Παιδείας  ΜΑΘΗΜΑ: Εισαγωγή στης αρχές Επιστήμης των Η/Υ  ΚΕΦΑΛΑΙΟ 4: Γλώσσες Αναπαράστασης Αλγορίθμων  ΕΝΟΤΗΤΑ 4.2: Δομή Ακολουθίας 
ΠΛΗΡΟΦΟΡΙΚΗ Γ΄ Γυμνασίου Α΄ Τρίμηνο
Δυναμικός Κατακερματισμός
Αναδρομή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Μεταγράφημα παρουσίασης:

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.1 Γραμματικές Ι

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.2 Γραμματικές ΙΙ

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.3 Γραμματικές ΙΙΙ

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.4 Γραμματικές ΙV

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.5 Γραμματικές V

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.6 Γραμματικές χωρίς συμφραζόμενα Ι

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.7 Γραμματικές χωρίς συμφραζόμενα ΙΙ

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.8 Γραμματικές χωρίς συμφραζόμενα ΙΙΙ

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.9 Γραμματικές χωρίς συμφραζόμενα ΙV Η επεξεργασία μιας συμβολοσειράς εισόδου από ένα αυτόματο στοίβας ονομάζεται απλοποίηση γιατί ουσιαστικά αποτελείται από βήματα επαναδιατύπωσης της συμβολοσειράς σύμφωνα με τη συνάρτηση μετάβασης. Επομένως αν ορίζεται π.χ. η μετάβασητότε η παράθεση της συμβολοσειράς εισόδουστην άδεια στοίβα προκαλεί την απλοποίηση Συνεχίζοντας με την εκτέλεση μεταβάσεων, προκύπτει

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.10 Γραμματικές χωρίς συμφραζόμενα V Ένα αυτόματο στοίβας μπορεί να εκτελέσει μεταβάσεις διαφόρων τύπων: ως αποτέλεσμα της ανάγνωσης ενός συμβόλου εισόδου χωρίς να έχει προηγηθεί ανάγνωση (μεταβάσεις - ε) μεταβάσεις ώθησης ή αφαίρεσης συμβόλων από τη στοίβα Σε οποιοδήποτε στάδιο της επεξεργασίας μιας συμβολοσειράς εισόδου, η διαμόρφωση του αυτόματου ορίζεται από την τρέχουσα κατάστασή του και τα περιεχόμενα της στοίβας. Έτσι, αν στην κατάσταση s j πάνω από το σύμβολο z 0 της κενής στοίβας περιέχονται ακόμη τα σύμβολα z 1 z 2,…,z k και το τελευταίο είναι το σύμβολο της κορυφής, τότε η διαμόρφωση της μηχανής είναι η: z 0 z 1 z 2,…,z k s j ήz 0 ζs j για ζ=z 1 z 2,…,z k

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.11 Γραμματικές χωρίς συμφραζόμενα VI Λέμε ότι η συμβολοσειρά αναγνωρίζεται από το αυτόματο στοίβας ΑΣ αν, είτε, όπου Α το σύνολο των καταστάσεων κατάληξης, είτε ζ=ε, δηλαδή η στοίβα είναι άδεια, χωρίς να είναι απαραίτητο η s f να είναι κατάληξη. Έτσι, η γλώσσα του αυτόματου ΑΣ ορίζεται από τη σχέση ή ζ=ε} ΘΕΩΡΗΜΑ: Για κάθε γραμματική G, χωρίς συμφραζόμενα, είναι δυνατό να κατασκευασθεί ένα κατάλληλο αυτόματο στοίβας ΑΣ, που να αναγνωρίζει ακριβώς τη γλώσσα που παράγεται από τη γραμματική G, δηλ. να ισχύει

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.12 Γραμματικές χωρίς συμφραζόμενα VII Γενικά ένα αυτόματο στοίβας αναγνωρίζει τη γλώσσα μιας γραμματικής χωρίς συμφραζόμενα με μη προσδιοριστικό τρόπο. Οικογένειες γλωσσών χωρίς συμφραζόμενα που η κάθε μια από αυτές μελετάται σε σχέση με τον τύπο του αυτόματου στοίβας από το οποίο αναγνωρίζονται: γραμμικές γλώσσες ημι-αιτιολογικές γλώσσες ισχυρά ημι-αιτιολογικές γλώσσες γλώσσες πεπερασμένων γυρισμάτων παρενθετικές γλώσσες απλές γλώσσες γλώσσες LL και LR Στην κατασκευή μεταγλωττιστών χρησιμοποιούμε μόνο τις τελευταίες.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.13 Γραμματικές χωρίς συμφραζόμενα VIII Λέμε ότι η συμβολοσειρά είναι μια αριστερή προτασιακή μορφή, αν έχει προκύψει από τις προηγούμενες, εφαρμόζοντας κάθε φορά παραγωγή, που αντικαθιστά το πρώτο μη τερματικό σύμβολο από αριστερά. Αυτό γράφεται ως, Μια συμβολοσειρά είναι δεξιά προτασιακή μορφή, αν έχει προκύψει εφαρμόζοντας κάθε φορά παραγωγή, που αντικαθιστά το πρώτο μη τερματικό σύμβολο από δεξιά. Αυτό γράφεται ως

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.14 Γραμματικές χωρίς συμφραζόμενα ΙX Λέμε ότι μια γραμματική είναι γραμματική LL(k) αν κάθε της πρόταση μπορεί να προέλθει από την αρχή της μέσω αριστερών ενδιάμεσων μορφών, όπου ο κανόνας που εφαρμόζεται σε κάθε παραγωγή μπορεί να προβλεφθεί με βάση τα k επόμενα σύμβολα της συμβολοσειράς. Όλες οι γλώσσες της οικογένειας LL είναι προσδιοριστικές. Μια γραμματική είναι γραμματική LR(k) αν κάθε της πρόταση μπορεί να παραχθεί από την αρχή της μέσω δεξιών ενδιάμεσων μορφών, που προκύπτουν με εφαρμογή κανόνα ο οποίος μπορεί να ανιχνευθεί με βάση τα k πρώτα τερματικά σύμβολα της προτασιακής μορφής. Όλες οι γλώσσες της οικογένειας LR είναι προσδιοριστικές. Η οικογένεια των γλωσσών LR(1) είναι ακριβώς η οικογένεια των προσδιοριστικών γλωσσών.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.15 Συμβολισμοί BNF και EBNF I

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.16 Συμβολισμοί BNF και EBNF II ΠΑΡΑΔΕΙΓΜΑ: Γραμματική αριθμητικών εκφράσεων S = έκφραση. έκφραση = έκφραση “+” όρος | έκφραση “-” όρος | όρος. όρος = όρος “*” παράγοντας | όρος “/” παράγοντας | παράγοντας. παράγοντας = “(” έκφραση “)” | αριθμός. αριθμός = ψηφίο { ψηφίο }. ψηφίο = “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.17 Παράγωγα και συντακτικά δένδρα I Ένα παράγωγο δένδρο αναπαριστά τη δομή μιας πρότασης και έχει το χαρακτηριστικό ότι μπορεί να αντιστοιχεί σε περισσότερες από μία παραγωγές. ΠΑΡΑΔΕΙΓΜΑ S = έκφραση. έκφραση = έκφραση ΤΛ έκφραση | “(” έκφραση “)” | “αριθμός”. ΤΛ = “+” | “-” | “*” | “/”. ΠΡΌΤΑΣΗ: (27-5)*8

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.18 Παράγωγα και συντακτικά δένδρα II Παραγωγή μέσω αριστερών προτασιακών μορφών Παραγωγή μέσω δεξιών προτασιακών μορφών

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.19 Παράγωγα και συντακτικά δένδρα IIΙ

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.20 Παράγωγα και συντακτικά δένδρα IV Συντακτικό δένδρο: πιο συμπαγής δομή που παράλληλα περιέχει και την πληροφορία για τη στατική σημασία της πρότασης

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.21 Γραμματικές με ασάφειες Ι Λέμε ότι μια γραμματική περιέχει ασάφειες, όταν σε μια πρότασή της μπορεί να αντιστοιχούν περισσότερα από ένα δένδρα. ΑΣΑΦΕΙΑ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΤΕΛΕΣΤΩΝ S = έκφραση. έκφραση = έκφραση ΤΛ έκφραση | “(” έκφραση “)” | “αριθμός”. ΤΛ = “+” | “-” | “*” | “/”. ΠΡΟΤΑΣΗ: 27-5*8

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.22 Γραμματικές με ασάφειες ΙΙ

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.23 Γραμματικές με ασάφειες ΙΙΙ

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.24 Γραμματικές με ασάφειες ΙV Σωστό δένδρο είναι το δένδρο εκείνο που είναι συμβατό με τη σημασία που θέλει να αποδώσει ο κατασκευαστής σε κάθε στοιχείο της γλώσσας. Για την ασάφεια προτεραιότητας τελεστών απαιτείται η χρήση κανόνων αποσαφήνισης προτεραιοτήτων. S = έκφραση. έκφραση = έκφραση ΤΛ_ΑΘ έκφραση | όρος. ΤΛ_ΑΘ = “+” | “-”. όρος = όρος ΤΛ_ΓΙ όρος | παράγοντας. ΤΛ_ΓΙ = “*” | “/”. παράγοντας = “(” έκφραση “)” | “αριθμός”.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.25 Γραμματικές με ασάφειες V Η προηγούμενη γραμματική παραμένει δέσμια ασάφειας ως προς την προσεταιριστικότητα των πράξεων: πως γίνεται η ανάλυση της ; Η συγκεκριμένη γραμματική αφήνει ανοικτό και το ενδεχόμενο (27-5)-8 αλλά και το ενδεχόμενο 27- (5-8). Συνήθως μας ενδιαφέρει να διασφαλίζουμε αριστερή προσεταιριστικότητα και αυτό επιτυγχάνεται αν ο αντίστοιχος κανόνας της γραμματικής χαρακτηρίζεται από αριστερή και μόνο αριστερή αναδρομικότητα.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.26 Γραμματικές με ασάφειες VΙ Διορθωμένη γραμματική:S = έκφραση. έκφραση = έκφραση ΤΛ_ΑΘ όρος | όρος. ΤΛ_ΑΘ = “+” | “-”. όρος = όρος ΤΛ_ΓΙ παράγοντας | παράγοντας. ΤΛ_ΓΙ = “*” | “/”. παράγοντας = “(” έκφραση “)” | “αριθμός”. Πρόταση: 27-5*8

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.27 Γραμματικές με ασάφειες VΙΙ Πρόταση:27-5-8

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.28 Γραμματικές με ασάφειες VΙΙI ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΜΕΤΕΩΡΟΥ ELSE S = εντολή. εντολή = “if” έκφραση “then” εντολή | “if” έκφραση “then” εντολή “else” εντολή | άλλο. if EK1 then if EK2 then ΕΝΤ1 else ΕΝΤ2

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.29 Γραμματικές με ασάφειες IΧ

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.30 Γραμματικές με ασάφειες Χ ΓΡΑΜΜΑΤΙΚΗ ΠΟΥ ΑΠΟΦΕΥΓΕΙ ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΜΕΤΕΩΡΟΥ ELSE ΜΕ ΤΕΧΝΑΣΜΑ S = εντολή. εντολή = συν_εντολή | ασυν_εντολή. συν_εντολή=“if” έκφραση “then” συν_εντολή “else” συν_εντολή | άλλο. ασυν_εντολή= “if” έκφραση “then” εντολή | “if” έκφραση “then” συν_εντολή “else” ασυν_εντολή.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.31 Αναπαράσταση παράγωγου δένδρου #define astEmptyProgram 399 #define astProgram 400 #define astEmptyDeclSeq 401 #define astDeclSeq 402 #define astDecl /* */ /* THE STRUCTURE FOR THE ABSTRACT SYNTAX TREE NODES ---- */ /* */ typedef struct AstNode_tag { int NodeType; struct symbol_tag *SymbolNode; struct AstNode_tag *pAstNode[4]; } AstNode;

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.32 Καθοδική Ανάλυση Ξεκινά από τη αρχή της γραμματικής (ρίζα δένδρου) για να αναπτύξει τη συμβολοσειρά, που αναλύει, αν αυτή αποτελεί πρόταση. Καμία από τις τεχνικές που θα εξετάσουμε δεν μπορεί να εφαρμοσθεί σε αριστερά αναδρομικές γραμματικές. Διακρίνουμε της τεχνικές της οπισθοδρόμησης και τις τεχνικές της πρόγνωσης.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.33 Καθοδική ανάλυση με οπισθοδρόμηση Ι 1. Δοθέντος συγκεκριμένου μη τερματικού συμβόλου εφαρμόζεται ο πρώτος κανόνας της γραμματικής. 2. Στην προτασιακή μορφή, που προκύπτει επιλέγεται το πρώτο από αριστερά μη τερματικό σύμβολο και εφαρμόζεται ο πρώτος κανόνας, που αναφέρεται σε αυτό. 3. Γίνεται επαναληπτική εφαρμογή του βήματος 2, για κάθε ένα από τα μη τερματικά σύμβολα, που ακολουθούν, μέχρι τη στιγμή της παραγωγής, μιας σειράς τερματικών συμβόλων (πρόταση γλώσσας αν ταυτίζεται) ή τμήματος τερματικών συμβόλων της προτασιακής μορφής, που διαφέρει από το αντίστοιχο τμήμα της συμβολοσειράς εισόδου Η δεύτερη περίπτωση μπορεί να είναι αποτέλεσμα εσφαλμένης επιλογής κανόνα. Αναιρείται ο κανόνας που εφαρμόσθηκε τελευταίος και χρησιμοποιείται ο επόμενος που ισχύει για το ίδιο μη τερματικό σύμβολο. Αν έχουν χρησιμοποιηθεί όλοι οι κανόνες, τότε ο αλγόριθμος διατηρεί το σύμβολο ως έχει και προχωρά στην αναίρεση του κανόνα για το προηγούμενο μη τερματικό σύμβολο και οπισθοδρομεί στην κατάλληλη θέση της συμβολοσειράς εισόδου.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.34 Καθοδική ανάλυση με οπισθοδρόμηση ΙΙ ΠΑΡΑΔΕΙΓΜΑ S = “k” X “n” | “k” Y. X = “l” | “m”. Y = “mmn” | “nnm”. ΠΡΟΤΑΣΗ: “kmmm”

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.35 Καθοδική ανάλυση με οπισθοδρόμηση ΙΙI Ιδιαίτερα πολύπλοκη Όχι αποδοτική Αρκετά γενική, δηλ. αναγνωρίζει πιο πολλές γλώσσες από τις άλλες τεχνικές καθοδικής ανάλυσης Αργεί στον εντοπισμό των λαθών και έτσι η ανάνηψη γίνεται πολύ δύσκολη

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.36 Ανάλυση αναδρομικής κατάβασης Ι Στην ανάλυση αναδρομικής κατάβασης ο κάθε κανόνας, που αναφέρεται σε κάποιο μη τερματικό σύμβολο, εκφράζεται από τον ορισμό μιας διαδικασίας, που θα το αναγνωρίζει. Ένας αναλυτής προβλέπουσας αναδρομικής κατάβασης αποτελείται: από μία καθολική μεταβλητή, που περιέχει την τιμή της τρέχουσας λεξικής μονάδας από μία βοηθητική διαδικασία αναγνώρισης, που ελέγχει αν η τρέχουσα λεξική μονάδα είναι η αναμενόμενη και καλεί τη διαδικασία λεξικής ανάλυσης, για την ανάγνωση της επόμενης λεξικής μονάδας και την ενημέρωση της καθολικής μεταβλητής από τις διαδικασίες ανάλυσης, που αντιστοιχούν στα μη τερματικά σύμβολα της γραμματικής από μια διαδικασία εκκίνησης, που αφού διαβάσει την πρώτη λεξική μονάδα καλεί τη διαδικασία, που αντιστοιχεί στο μη τερματικό σύμβολο της αρχής.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.37 Ανάλυση αναδρομικής κατάβασης ΙΙ ΠΑΡΑΔΕΙΓΜΑ S = έκφραση. έκφραση = έκφραση “+” όρος | έκφραση “-” όρος | όρος. όρος = όρος “*” παράγοντας | όρος “/” παράγοντας | παράγοντας. παράγοντας = “(” έκφραση “)” | “αριθμός”. παράγοντας: Επέλεξε ΛΕΞ_ΜΟΝ περίπτωση “(”: αναγνώρισε (“(”); έκφραση; αναγνώρισε (“)”); περίπτωση “αριθμός”: αναγνώρισε(“αριθμός”); αλλιώς: λάθος; Τέλος παράγοντα. αναγνώρισε (αν_λεξ_μον): αν (ΛΕΞ_ΜΟΝ=αν_λεξ_μον) τότε διάβασε την επόμενη μονάδα και ενημέρωσε τη μεταβλητή ΛΕΞ_ΜΟΝ; αλλιώς λάθος; τέλος αν Τέλος αναγνώρισε.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.38 Ανάλυση αναδρομικής κατάβασης ΙΙI Η προβλέπουσα αναδρομική κατάβαση στηρίζεται στην πρόγνωση του κατάλληλου κάθε φορά κανόνα, που οδηγεί στην παραγωγή του δένδρου της πρότασης. Ας θεωρήσουμε τη μη αριστερά αναδρομική γραμματική των αριθμητικών εκφράσεων: S = έκφραση. έκφραση = όρος υπ_όροι. υπ_όροι = “+” όρος υπ_όροι | “-” όρος υπ_όροι | ε. όρος = παράγοντας υπ_παραγ. υπ_παραγ = “*” παράγοντας υπ_παραγ | “/” παράγοντας υπ_παραγ | ε. παράγοντας = “(”έκφραση “)” | “αριθμός”.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.39 Ανάλυση αναδρομικής κατάβασης ΙV Για το μη τερματικό σύμβολο «έκφραση», μπορεί εναλλακτικά να έχουμε την παραγωγή, ή την παραγωγή Γενικά, για να στηριχθεί η ανάλυση στην τεχνική της πρόγνωσης χρειάζεται για κάθε μη τερματικό σύμβολο, να είναι εκ των προτέρων γνωστό τo σύνολο των τερματικών, που είναι δυνατό να εμφανισθούν στην αρχή των συμβολοσειρών, που παράγονται από αυτό (σύνολο FIRST). Επιπλέον, αν η γραμματική περιλαμβάνει κανόνες-ε, τότε για κάθε μη τερματικό σύμβολο που βρίσκεται στο αριστερό μέρος ενός τέτοιου κανόνα, επιβάλλεται και ο υπολογισμός του συνόλου των τερματικών, που μπορεί να εμφανισθούν αμέσως μετά από αυτό (σύνολο FOLLOW).

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.40 Ανάλυση αναδρομικής κατάβασης V

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.41 Ανάλυση αναδρομικής κατάβασης VI

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.42 Ανάλυση αναδρομικής κατάβασης VII

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.43 Ανάλυση αναδρομικής κατάβασης VIII Παραδείγματα FIRST και FOLLOW (γραμματική αριθμητικών εκφράσεων)

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.44 Ανάλυση αναδρομικής κατάβασης IX Για τη φυσική ανάπτυξη δένδρου, κάθε διαδικασία δημιουργεί ένα κόμβο τον οποίο επιστρέφει ως αποτέλεσμα στο σημείο από όπου κλήθηκε. ΠΡΟΣΟΧΗ στην αριστερή προσεταιριστικότητα: χρειάζεται ειδική μέριμνα στη σχεδίαση της αλληλεπίδρασης μεταξύ των διαδικασιών της ανάλυσης. Δεν μπορούν να χρησιμοποιηθούν αριστερά αναδρομικές γραμματικές. Δεν μπορούν να χρησιμοποιηθούν γραμματικές, που δεν είναι LL(1), όπως: σειρά_εντολών = εντολή “;” σειρά_εντολών | εντολή. εντολή = “τερματικό”.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.45 Ανάλυση LL(1) I

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.46 Ανάλυση LL(1) II Αλγόριθμος υπολογισμού πίνακα ανάλυσης

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.47 Ανάλυση LL(1) IIΙ ΠΑΡΑΔΕΙΓΜΑ (γραμματική αριθμητικών εκφράσεων)

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.48 Ανάλυση LL(1) IV Αλγόριθμος ανάλυσης LL(1)

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.49 Απομάκρυνση αριστερής αναδρομικότητας Ι Διακρίνουμε την άμεση και την έμμεση αριστερή αναδρομικότητα ΠΑΡΑΔΕΙΓΜΑ ΑΜΕΣΗΣ ΑΡ. ΑΝΑΔΡΟΜΙΚΟΤΗΤΑΣ: έκφραση = έκφραση ΤΛ_ΑΘ όρος | όρος. ΠΑΡΑΔΕΙΓΜΑ ΕΜΜΕΣΗΣ ΑΡ. ΑΝΑΔΡΟΜΙΚΟΤΗΤΑΣ: ΓΕΝΙΚΗ ΜΟΡΦΗ ΑΜΕΣΗΣ ΑΡ. ΑΝΑΔΡΟΜΙΚΟΤΗΤΑΣ: μετασχηματίζεται στην ισοδύναμη μορφή

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.50 Απομάκρυνση αριστερής αναδρομικότητας ΙΙ ΠΑΡΑΔΕΙΓΜΑ Η S = έκφραση. έκφραση = έκφραση “+” όρος | έκφραση “-” όρος | όρος. όρος = όρος “*” παράγοντας | όρος “/” παράγοντας | παράγοντας. παράγοντας = “(” έκφραση “)” | “αριθμός”. μετασχηματίστηκε στην S = έκφραση. έκφραση = όρος υπ_όροι. υπ_όροι = “+” όρος υπ_όροι | “-” όρος υπ_όροι | ε. όρος = παράγοντας υπ_παραγ. υπ_παραγ = “*” παράγοντας υπ_παραγ | “/” παράγοντας υπ_παραγ | ε. παράγοντας = “(”έκφραση “)” | “αριθμός”.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.51 Απομάκρυνση αριστερής αναδρομικότητας ΙΙΙ Αλγόριθμος απομάκρυνσης άμεσης και έμμεσης αριστερής αναδρομικότητας

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.52 Απομάκρυνση αριστερής αναδρομικότητας ΙV Κατά την απομάκρυνση της αριστερής αναδρομικότητας δεν αλλάζει η γλώσσα της γραμματικής. Αλλάζει η μορφή των δένδρων που παράγει η επιλεγείσα μέθοδος ανάλυσης. Σημαντικότερη συνέπεια είναι το γεγονός ότι χάνεται η επιθυμητή ιδιότητα της αριστερής προσεταιριστικότητας.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.53 Αριστερή παραγοντοποίηση Ι Προηγείται οποιασδήποτε προβλέπουσας ανάλυσης, αν για το ίδιο μη τερματικό σύνολο υπάρχουν δύο ή περισσότεροι κανόνες με το ίδιο πρόθεμα στο δεξί μέρος. ΠΑΡΑΔΕΙΓΜΑΤΑ σειρά_εντολών = εντολή “;” σειρά_εντολών | εντολή. εντολή = “τερματικό”. ή εντολή_if = “if” έκφραση “then” εντολή | “if” έκφραση “then” εντολή “else” εντολή.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.54 Αριστερή παραγοντοποίηση ΙΙ Γενικά, ο κανόνας μετασχηματίζεται στον

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.55 Ανάνηψη λαθών Ι Εντοπισμός λάθους όσο το δυνατόν πιο έγκαιρα. Επιλογή θέσης από όπου θα συνεχίζεται η ανάλυση. Να εντοπίζονται μόνο υπαρκτά λάθη και να μην εμφανίζονται διαδιδόμενα πλασματικά λάθη. Να αποφεύγεται η μετάπτωση του αναλυτή σε ατέρμωνες βρόχους. Τεχνικές ανάνηψης λαθών: - ανάνηψη «πανικού» - ανάνηψη σε επίπεδο φράσης - κανόνες παραγωγής για λάθη - συνολική διόρθωση

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.56 Ανάνηψη λαθών ΙΙ Η ανάνηψη «πανικού» στην προβλέπουσα αναδρομική κατάβαση υλοποιείται με τον καθορισμό μονάδων συγχρονισμού. Όταν ο αναλυτής βρει λάθος, τότε προσπερνά τις επόμενες μονάδες μέχρι να εντοπίσει μια μονάδα συγχρονισμού από την οποία μπορεί να συνεχίσει την ανάλυσης. Κάθε μη τερματικό σύμβολο έχει τις δικές του μονάδες συγχρονισμού. Οι μονάδες συγχρονισμού επιλέγονται μέσα από τα σύνολα FOLLOW. Στην ανάλυση LL(1) έχουμε εντοπισμό λάθους, όταν στην κορυφή της στοίβας βρίσκεται ένα μη τερματικό σύμβολο X, τέτοιο ώστε το τρέχον σύμβολο εισόδου να μην περιλαμβάνεται στο σύνολο FIRST(X) και αν αυτό συμβαίνει να περιέχει το ε, ούτε στο σύνολο FOLLOW(X).

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.57 Ανάνηψη λαθών ΙΙI Η ανάνηψη «πανικού» μπορεί εύκολα να υλοποιηθεί με τον προσδιορισμό της κατάλληλης ενέργειας, για κάθε περίπτωση κενής θέσης, στον πίνακα ανάλυσης. Διακρίνουμε τρεις πιθανές ενέργειες ανάνηψης: - την αφαίρεση του συμβόλου Χ από τη στοίβα (pop), - το προσπέρασμα ενός αριθμού συμβόλων εισόδου, μέχρι τον εντοπισμό μονάδας, που μπορεί να χρησιμοποιηθεί για την επανεκκίνηση της διαδικασίας ανάλυσης (scan) και - την ώθηση στη στοίβα ενός νέου μη τερματικού συμβόλου.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.58 Ανάνηψη λαθών ΙV Η πρώτη ενέργεια εκτελείται, όταν η τρέχουσα λεξική μονάδα είναι η \0 ή όταν αυτή ανήκει στο FOLLOW(X). Η δεύτερη ενέργεια εκτελείται, όταν η τρέχουσα λεξική μονάδα δεν είναι η \0 και δεν ανήκει στο. Η τρίτη ενέργεια επιστρατεύεται, όταν συμβεί να έχει αδειάσει η στοίβα, ενώ δεν έχει ολοκληρωθεί ακόμη η ανάγνωση όλων των μονάδων της συμβολοσειράς εισόδου. Τότε ωθείται στη στοίβα το σύμβολο της αρχής της γραμματικής και αγνοούνται ένα προς ένα όλα τα επόμενα σύμβολα εισόδου, μέχρι την ανάγνωση συμβόλου, που ανήκει στο σύνολο FIRST της αρχής.

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.59 Ανάνηψη λαθών V

ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Κ. ΛΑΖΟΣ - Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Πέμπτη, 30 Ιουλίου 2015Τμ. Πληροφορικής, Α.Π.Θ.60 Ανάνηψη λαθών VI