Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 1 Παράσταση Πληροφοριών.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Δυαδικό Σύστημα Αρίθμησης
Advertisements

Παράσταση τιμών δεδομένων
Δυαδικη παρασταση αριθμων και συμβολων
Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ
Εισαγωγή στις Τεχνολογίες της Πληροφορικής και των Επικοινωνιών
Κλάσματα.
Προγραμματισμός Η/Υ Πανεπιστήμιο Αιγαίου
Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 1 ΑΛΓΟΡΙΘΜΟΙ- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ.
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
ΕΣ 08: Επεξεργαστές Ψηφιακών Σημάτων © 2006 Nicolas Tsapatsoulis Η Αρχιτεκτονική των Επεξεργαστών Ψ.Ε.Σ Τμήμα Επιστήμη και Τεχνολογίας Τηλεπικοινωνιών.
Προγραμματισμός PASCAL Πληροφορική Γ' Λυκείου μέρος γ
Επισκέπτρια Επίκουρη Καθηγήτρια
Παράσταση τιμών δεδομένων
Συστήματα Αρίθμησης Αριθμοί σταθερής και κινητής υποδιαστολής.
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΤΕΛΕΣΤΕΣ - ΕΚΦΡΑΣΕΙΣ ΜΑΘΗΜΑ 4.
ΔΙΔΑΣΚΩΝ: ΣΠΥΡΟΣ ΝΙΚΟΛΑΪΔΗΣ
Σημειώσεις : Χρήστος Μουρατίδης
ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Συστήματα αρίθμησης Δυαδικό αριθμητικό σύστημα
4. Συνδυαστική Λογική 4.1 Εισαγωγή
ΕΝΟΤΗΤΑ 6Η ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΤΗΣ ΤΥΠΙΚΗΣ ΛΟΓΙΚΗΣ Β΄
1 Ολυμπιάδα Πληροφορικής Μάθημα 2. 2 Στόχοι μαθήματος Αριθμητικοί– Λογικοί Τελεστές Η εντολή IF.
ΕΣ 08: Επεξεργαστές Ψηφιακών Σημάτων © 2006 Nicolas Tsapatsoulis Εργαλεία Ανάπτυξης Εφαρμογών σε Επεξεργαστές Ψ.Ε.Σ Τμήμα Επιστήμη και Τεχνολογίας Τηλεπικοινωνιών.
Σχετικά με κλασματικές παραστάσεις
ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ & ΕΝΔΕΙΚΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΛΗΣ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 1 ΑΛΓΟΡΙΘΜΟΙ- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ.
ΟΙ ΑΡΙΘΜΗΤΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
Κοζαλάκης Ευστάθιος ΠΕ03
Διαφάνειες παρουσίασης #2
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ
ΗΜΥ 100: Εισαγωγή στην Τεχνολογία Διάλεξη 16 Εισαγωγή στα Ψηφιακά Συστήματα: Μέρος B TΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ.
Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 1 Εισαγωγή στην.
ΚΕΦΑΛΑΙΟ Το αλφάβητο της ΓΛΩΣΣΑΣ
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ.
ΠΑΡΑΔΕΙΓΜΑ: ΤΑ ΕΠΙΠΕΔΑ ΥΛΙΚΟΥ – ΛΟΓΙΣΜΙΚΟΥ ΣΕ ΕΝΑΝ ΥΠΟΛΟΓΙΣΤΗ.
ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 5: Οι διαδοχικές επεκτάσεις της έννοιας του αριθμού: ακέραιος, κλάσμα,
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
1-1 Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Διδάσκων: Γιώργος Σταμούλης.
Δίκτυα Υπολογιστών 1 Εργαστήριο Δ.ΙΕΚ ΚΑΛΑΜΑΤΑΣ Ειδικότητα: Τεχνικός Δικτύων και Τηλεπικοινωνιών Εισηγητής: Ψαρράς Δημήτριος καθηγητής Πληροφορικής – Μηχανικός.
Φυσική για Επιστήμονες και Μηχανικούς Εισαγωγή – Φυσική και μετρήσεις.
ΜΕΤΑΒΛΗΤΕΣ-ΣΤΑΘΕΡΕΣ -ΕΚΦΡΑΣΕΙΣ
ΣχεδΙαση ΨηφιακΩν ΣυστημΑτων Συστηματα αριθμησησ Δυαδικοι αριθμοι
Δεδομένα, μεταβλητές, υπολογισμοί
ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΒΛΗΜΑ ΑΛΓΟΡΙΘΜΟΣ ΛΥΣΗ
Γιώργος Δημητρίου Μάθημα 11-12: Σύνθετες Πράξεις
Δεκαδικοί αριθμοί Τι σημαίνουν ;.
Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα
Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ
Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα
Πληροφορική Ενότητα 1 (Μέρος Β): Δυαδικό Σύστημα Αρίθμησης.
Εισαγωγή στους Η/Υ Ενότητα 8: Αριθμητική υπολογιστών Ιωάννης Σταματίου
Η ΠΡΑΞΗ ΤΗΣ ΔΙΑΙΡΕΣΗΣ Διαιρετέος: Ακέραιος διαιρέτης: Ακέραιος
Ψηφιακός Κόσμος Ιωάννα Γαρδίκη
Εισαγωγή στους Η/Υ Ενότητα 9: Μετατροπές και πράξεις στους Η/Υ
ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΚΕΡΑΙΩΝ
Η ΑΡΙΘΜΙΤΙΚΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
Τύποι Μεταβλητών Τελεστές Βασική Είσοδος/Έξοδος
Μανασσάκης Βασίλης Καθηγητής Πληροφορικής
Τελεστές και ή όχι Για την εκτέλεση αριθμητικών πράξεων
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
Χειμερινό εξάμηνο 2017 Στέλιος Πετράκης
ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ
Λογική Σχεδίαση Ψηφιακών Συστημάτων
ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 2008
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005
ΗΜΥ 210: Λογικός Σχεδιασμός
Υπολογιστικά Φύλλα Περιεχόμενο κελιού - Πράξεις
Βασικές έννοιες (Μάθημα 2) Τίτλος: Η Συσκευή
Μεταγράφημα παρουσίασης:

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 1 Παράσταση Πληροφοριών  0,1 bits  Επίπεδα δομών πληροφοριών Βασικές δομές Ανώτερες δομές  Είδη πληροφοριών Αριθμητικές Αλφαριθμητικές  Αριθμητικά συστήματα υπολογιστών  Αριθμητική ακρίβεια (μήκος λέξης)  Βάση β (έχει β διαφορετικά ψηφία, 0,...,β-1) Σταθερή Μικτή  Είδη συστημάτων Πλήρες σύστημα χωρίς πλεονασμούς Σύστημα με πλεονασμούς Μη πλήρες σύστημα Θεσιακό – Μη θεσιακό σύστημα Θα μιλήσουμε μόνο για τα συμβατικά θεσιακά πλήρη συστήματα

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 2 Αρχικές έννοιες  Μέτρηση, Απαρίθμηση  Αριθμητικά συστήματα βάσης 1,2,3,5,7,8,10,12,16,24,30,60,360 κλπ  Τι είναι ο υπολογιστής; Πληροφορίες, δεδομένα Διεργασία Πληροφορίες δεδομένα Διαφύλαξη Επεξεργασία Μετάδοση  Είδη υπολογιστών – ακρίβεια υπολογισμών Ψηφιακοί Αναλογικοί Υβριδικοί

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 3 Συμβατικά αριθμητικά συστήματα βάσης  Σταθερή βάση β, χωρίς πλεονασμούς, θεσιακά, πλήρη.  Σύνολο ψηφίων: {0,1,..., β-1}  Παράσταση: Ν β =(a n-1 a n-1 … a 2 a 1 a 0, a -1 a -2 … a -k ) β  Συντελεστές βαρύτητας θέσης:  Μέγεθος: Μ= a n-1 β n-1 + a n-1 β n-2 … a 2 β 2 + a 1 β 1 + a 0, a -1 β -1 + a -2 β -2 + … +a -k β -k  Συνήθεις βάσεις: Δυαδικό, οκταδικό, δεκαδικό, δεκαεξαδικό  Δυαδικό: Αξιοπιστία Κόστος / απόδοση  Βέλτιστη βάση β = e = 2,71828 μέγεθος Μ= β n, κόστος Κ=c n β, οπότε Κ=c lnM β/lnβ, και dK/dβ= c lnM (lnβ-1)/(lnβ) 2 η παράγωγος μηδενίζεται για β=e και η 2η παράγωγος είναι αρνητική  Εσωτερικές παραστάσεις Παράσταση σταθερής υποδιαστολής Παράσταση κινητής υποδιαστολής Παράσταση BCD

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 4 ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ X i Y i C i S i C i+1 D i C i

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ - ΔΙΑΙΡΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ X i Y i P i ΔΙΑΙΡΕΣΗ X i Y i D i

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 6 Μετατροπή βάσης στα συμβατικά συστήματα α. Ακέραιος 1. Διαδοχικές διαιρέσεις του Ν με το Β (πράξεις στο β) τα ψηφία προκύπτουν ως το υπόλοιπο διαίρεσης Α i = [...[[N/B]/B].../B] mod B, με [x/y] το ακέραιο πηλίκο Τυπική περίπτωση η μετατροπή από το δεκαδικό σε άλλη βάση 2. Διαδοχικοί πολλαπλασιασμοί των ψηφίων του Ν με το β (πράξεις στο Β) η παράσταση στη βάση Β προκύπτει σαν αποτέλεσμα Τυπική περίπτωση η μετατροπή στο δεκαδικό από άλλη βάση

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 7 Ακέραιοι Repeat begin Q = [N/B] P = N-QxB comment το Q είναι το πηλίκο και P το υπόλοιπο write το P ψηφίο Ν = Q end Until Q=0 begin N=0 for i= n-1 by -1 to 0 do N = N*β+ α i end for end

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 8 Μετατροπή βάσης στα συμβατικά συστήματα β. Κλασματικός 1. Διαδοχικοί πολλαπλασιασμοί με Β (πράξεις στο β) 2. Διαδοχικές διαιρέσεις με β (πράξεις στο Β) 3. Από βάση β στη βάση β Ομάδες κ ψηφίων

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 9 Κλασματικοί For i=1 to m do begin N = N*B A -i =[N] write A -i N = N -A -i comment N -A -i είναι το κλασματικό μέρος end end for Begin N = 0 for i = n by -1 to 1 do N = (N + α -i )/β end

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 10 Μετατροπή από Δεκαδικό σε Δυαδικό 1η μέθοδος : πράξεις στο δεκαδικό π.χ. 132,82 => , , x 2 LSB ), MSB ), MSB ), ),12 2 0),24 2 0),48 2 0),96 LSB 2 1),92.

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών = (1x x10 + 2) = (1x ) = (1x ) x x Μετατροπή από Δεκαδικό σε Δυαδικό 2η μέθοδος : πράξεις στο δυαδικό 1/2

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών (2/10) , … 1000, (+10/10) , Μετατροπή από Δεκαδικό σε Δυαδικό 2η μέθοδος : πράξεις στο δυαδικό 2/2

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 13 Παράσταση αρνητικών αριθμών Προσημασμένο μέτρο  Προσημασμένο μέτρο (ΠΜ)  Π.χ. Για Χ = +(101) 10 = ( ) 2 το -(101) 10 = ( ) 2  Έστω

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 14 Παράσταση αρνητικών αριθμών 1-Συμπλήρωμα 1.Γενικά (β-1)-συμπλήρωμα ( (β-1)-Σ )  Στην περίπτωση του 1-Συμπλήρωμα ενός ακεραίου δυαδικού αριθμού αρκεί να κάνουμε τα 0 => 1 και τα 1 => 0.  Π.χ. Για Χ = +(101) 10 = ( ) 2 το -(101) 10 = ( ) 2

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 15 Παράσταση αρνητικών αριθμών 2-Συμπλήρωμα  Γενικά β-συμπλήρωμα ( β-Σ )  Στην περίπτωση του 2-Συμπλήρωμα ενός ακεραίου δυαδικού αριθμού αρκεί στην παράσταση 1-Σ να προσθέσουμε μια μονάδα  Π.χ. Για Χ = +(101) 10 = ( ) 2 το -(101) 10 = ( ) 2

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 16 Παράδειγμα παράστασης ακεραίων στα τρία συστήματα για υπολογιστή των 8-bits

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 17 Πράξεις στο 2 - Σ x +y α) x  0, y  0 x + y = |x| + |y| β) x < 0, y < 0 x + y = 2 n - |x| + 2 n - |y| = 2 n + 2 n - (|x| + |y|) γ) x  0, y < 0 2 n + (|x| - |y|) για |x|  |y| x + y = |x| + 2 n - |y| = { 2 n – (|y| - |x|) για |x| < |y| Κανόνας: Το ψηφίο υπερχείλισης αγνοείται

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 18 Πράξεις στο 1 - Σ x + y α) x  0, y  0 x + y = |x| + |y| β) x < 0, y < 0 x + y = 2 n - |x| n - |y| - 1 = 2 n + [2 n - (|x| + |y|) - 1] - 1 γ) x  0, y < 0 2 n + [|x| - |y|] – 1 για |x|  |y| x + y = |x| + 2 n - |y| - 1 = { 2 n – [|y| - |x|] – 1 για |x| < |y| Κανόνας: Το ψηφίο υπερχείλισης προστίθεται στο τέλος

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 19 Παράδειγμα 2-Σ 1-Σ ) ) ) )  89{  39{ Σ 1-Σ

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 20 Παράσταση κινητής υποδιαστολής _ (m, e) => A = m * β e m = κλασματικό μέρος mantissa e = εκθέτης exponent m, e προσημασμένος δυαδικός αριθμός β βάση β = 2 κ ( 2, 8, 16 ) Παράγοντες η βάση Το πλήθος των bits των m και e (p+q+2=n) Προσημασμένη παράσταση των m και e Διάταξη των bits (m s. m -1 m -2 …. m -p, e s e q-1 … e 1 e 0 )

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 21 απλής ακρίβειας - διπλής ακρίβειας Το πλήθος bits του m καθορίζει την ακρίβεια Το πλήθος bits του e καθορίζει το εύρος τιμών (σε συνάρτηση με τη βάση β) Κανονικοποίηση – Κανανικοποιημένη μορφή Μετατόπιση του εκθέτη (2 – Σ) 2 q = σταθερό μετατόπισης q = e 10 10…0 00…0 011…1 e 2-Σ 00…0 10…0 111…1 e μ Παράσταση κινητής υποδιαστολής

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 22 Παράσταση κινητής υποδιαστολής Εύρος τιμών 0

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 23 BCD - κώδικες 16! / (16-10)! 2.9 x διαφ. 4-ψήφιοι / 384 7,6 x 10 7 κώδικες  Βάρη Θετικά αρνητικά Υπερ-3Gray από

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 24 Αυτοσυμπληρωμένος Αβαρής BCD αριθμητική ΠΜ, 9-Σ, 10-Σ 795 Διόρθωση : πρόσθεση 0110 στις θέσεις που 1683 είναι μεταξύ A-F ή δημιούργησαν κρατούμενα BCD - κώδικες

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 25 BCD κώδικες

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 26 Κώδικας ASCII

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 27 Κώδικας Holerith

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Κ. Χαλάτσης, Εισαγωγή στην Επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών 28 O 8-bit κώδικας EBCDIC