31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι Για τον προτασιακό.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Κατηγορηματικός Λογισμός
Advertisements

Βασικές έννοιες αλγορίθμων
Σχεσιακός Λογισμός Βάσεις Δεδομένων Ευαγγελία Πιτουρά.
ΓΡΑΜΜΑΤΙΚΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ I
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Σχεσιακός Λογισμός.
27 Ιουνίου 2014 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΑΥΤΟΜΑΤΑ Ι Αυτόματο ελέγχου πρόσβασης με.
Διαδικασία ανάπτυξης Προσδιορισμός απαιτήσεων Αρχιτεκτονικός Σχεδιασμός Λεπτομερής Σχεδιασμός Κωδικοποίηση Έλεγχος Παράδοση Συστήματος Λειτουργία - Συντήρηση.
Ασκήσεις Συνδυαστικής
Τεχνολογία ΛογισμικούSlide 1 Τυπική Εξειδίκευση u Τεχνικές για σαφή εξειδίκευση λογισμικού.
ΣΤΟΙΧΕΙΑ ΨΕΥΔΟΚΩΔΙΚΑ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΒΑΣΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΙΝΑΚΩΝ
Άρνηση στο Λ.Π.. Αρνητικά γεγονότα/γνώση δεν περιγράφονται στο πρόγραμμα. Απλώς δεν περιλαμβάνονται στο πρόγραμμα. Παράδειγμα –Γράφουμε: father (bob,
Σχεδίαση Αλγορίθμων Προτεινόμενα βιβλία:
Βάσεις Γνώσεων Λογική και Σημασιολογία Πάνος Βασιλειάδης Μάρτης 2003
Τι είναι συνάρτηση Ορισμός
Κεφάλαιο 2ο Πεπερασμένα αυτόματα.
Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 5) 1 Τυχαία συνάρτηση Μία τυχαία συνάρτηση (ΤΣ) είναι ένας κανόνας με τον οποίο σε κάθε αποτέλεσμα ζ.
Άλγεβρα Boole και Λογικές Πύλες
ΕΚΠΑΙΔΕΥΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΕΥΡΥΤΕΡΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΧΡΗΣΙΜΟΠΟΙΩΝΤΑΣ ΔΙΑΦΟΡΕΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΚΑΘΕ ΠΤΥΧΗ ΤΟΥ Κάππας Κων/νος Επιμορφωτής ΤΠΕ -
24 Νοεμβρίου 2014 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΠΡΟΔΙΑΓΡΑΦΗ ΙΔΙΟΤΗΤΩΝ ΜΕ ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ.
Ο Μετασχηματισμός Laplace και ο Μετασχηματισμός Ζ
Μάθημα 2 ο : Βασικές έννοιες 1 Ακαδημαϊκό Έτος
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Κυριακή, 11 Ιανουαρίου 2015Κυριακή, 11 Ιανουαρίου 2015Κυριακή, 11 Ιανουαρίου 2015Κυριακή, 11 Ιανουαρίου.
ΗΥ120 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Συναρτησεις Boole.
Βάσεις Δεδομένων II Ενότητα 3: Σχεσιακός λογισμός I Γεωργία Γκαράνη Επίκουρος Καθηγήτρια Τμήμα Μηχανικών Πληροφορικής Τ.Ε. T.E.I. Θεσσαλίας.
27 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι Η τυπική επαλήθευση.
ΜΑΘΗΜΑ: ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΔΙΔΑΣΚΟΝΤΕΣ: Π. ΚΑΤΣΑΡΟΣ Τρίτη, 31 Μαρτίου 2015Τρίτη, 31 Μαρτίου 2015Τρίτη, 31 Μαρτίου 2015Τρίτη, 31 Μαρτίου 2015Τμ. Πληροφορικής,
31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι Η λογική CTL* (Computation.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Σχεσιακός Λογισμός.
ΝΤΕΝΤΕΡΜΙΝΙΣΤΙΚΑ ΠΕΠΕΡΑΣΜΕΝΑ ΑΥΤΟΜΑΤΑ Ι
Κατανόηση (δεδομένα – ζητούμενα) Ανάλυση σε απλούστερα προβλήματα Επίλυση με οργανωμένα, απολύτως καθορισμένα, πεπερασμένα βήματα ΑΛΓΟΡΙΘΜΟΣ.
2 Απριλίου 2015 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Σχεσιακός Λογισμός.
Ένας φιλόσοφος του κοινού νου
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών – Τμήμα Πληροφορικής και Τηλεπικοινωνιών 1 Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Προπτυχιακό.
ΜΑΘΗΜΑ: ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C++ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Πέμπτη, 2 Απριλίου 2015Πέμπτη, 2 Απριλίου 2015Πέμπτη, 2 Απριλίου 2015Πέμπτη, 2 Απριλίου 2015Τμ.
Το Συντακτικό της PROLOG
ΣΥΝΟΛΑ.
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών – Τμήμα Πληροφορικής και Τηλεπικοινωνιών 1 Κεφάλαιο 4 Σημασιολογία μιας Απλής Προστακτικής Γλώσσας Προπτυχιακό.
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Τετάρτη, 15 Απριλίου 2015Τετάρτη, 15 Απριλίου 2015Τετάρτη, 15 Απριλίου 2015Τετάρτη, 15 Απριλίου 2015Τμ.
Κεφάλαιο 10 – Υποπρογράμματα
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Σχεσιακός Λογισμός.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Συναρτησιακές Εξαρτήσεις.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Συναρτησιακές Εξαρτήσεις.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Λογικός Σχεδιασμός Σχεσιακών Σχημάτων.
Διαγνώσιμες και μη-διαγνώσιμες ασυμφραστικές γραμματικές και γλώσσες
Τεχνολογία ΛογισμικούSlide 1 Εξειδίκευση Βασισμένη σε Μοντέλο u Τυπική εξειδίκευση λογισμικού με ανάπτυξη μαθηματικού μοντέλου για το σύστημα.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Σχεσιακός Λογισμός.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Συναρτησιακές Εξαρτήσεις.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Σχεσιακός Λογισμός.
Τεχνολογία ΛογισμικούSlide 1 Τεχνολογία Απαιτήσεων u Καθορίζει τι θέλει ο πελάτης από ένα σύστημα λογισμικού.
Εισαγωγή στην Έννοια του Αλγορίθμου και στον Προγραμματισμό
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Σχεσιακός Λογισμός.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 3η Μετασχηματισμός Fourier.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΠΑΡΑΛΛΗΛΑ ΚΑΙ ΣΥΓΚΡΙΣΙΜΑ ΣΩΜΑΤΑ ΚΕΙΜΕΝΩΝ
Πρόγραμμα Προπτυχιακών Σπουδών Ροή Λ: Λογισμικό
Αρχές Διοίκησης και Διαχείρισης Έργων
Λήμμα άντλησης Πως αποφασίζουμε αποδεικνύουμε ότι μία γλώσσα δεν είναι κανονική; Δυσκολότερο από την απόδειξη ότι μια γλώσσα είναι κανονική. Γενικότερο.
Ισοδυναμία ΠΑ - ΚΕ Για να δείξουμε ότι οι κανονικές γλώσσες - εκφράσεις και τα πεπερασμένα αυτόματα είναι ισοδύναμα σε εκφραστική δυνατότητα έχουμε να.
Συναρτησιακές Εξαρτήσεις
Τελεστές και ή όχι Για την εκτέλεση αριθμητικών πράξεων
Εισαγωγή στην Πληροφορική μεγάλου όγκου δεδομένων
Σχεσιακός Λογισμός Βάσεις Δεδομένων Ευαγγελία Πιτουρά.
ΜΑΘΗΜΑΤΙΚΑ Γ΄ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ 13ο ΠΕΡΙΕΧΟΜΕΝΑ
Εργασία στην JML Μάθημα: Τυπικές Μέθοδοι Ανάλυσης Συστημάτων
ΠΛΗΡΟΦΟΡΙΚΗ Γ΄ Γυμνασίου Α΄ Τρίμηνο
Σχεσιακός Λογισμός Βάσεις Δεδομένων Ευαγγελία Πιτουρά.
UNIT 1 Τα Πρώτα Προγράμματα.
1. Το πληροφοριακό περιεχόμενο των μαθηματικών αληθειών
Μεταγράφημα παρουσίασης:

31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι Για τον προτασιακό λογισμό παρουσιάσαμε – την αποδεικτική θεωρία (natural deduction/λογικό συμπέρασμα) – τη σύνταξη (ορίζεται με γραμματική χωρίς συμφραζόμενα και εκφράζεται με συντακτικά δέντρα) – τη σημασία (πίνακες αληθείας) Αυτά είναι τα βασικά στοιχεία που συγκροτούν μία τυπική γλώσσα. Ο προτασιακός λογισμός είναι μία τυπική γλώσσα κατάλληλη για δηλωτικές προτάσεις, προτάσεις δηλαδή για τις οποίες μπορεί να δοθεί μία τιμή αληθείας.

31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 2 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ενώ ο προτασιακός λογισμός λειτουργεί ικανοποιητικά για προτάσεις με τμήματα not, and, or δεν είναι επαρκής για την περιγραφή άλλων προσδιορισμών που απαντώνται σε φυσικές ή τεχνητές γλώσσες όπως για παράδειγμα υπάρχει ( there exists ), όλοι ( all ), μόνο ( only ) κλπ. Για να καλυφθεί αυτό το κενό δημιουργήθηκε ο κατηγορηματικός λογισμός (predicate logic), που είναι επίσης γνωστός ως λογική πρώτης τάξης (first order logic).

31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 3 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ ΠΑΡΑΔΕΙΓΜΑ «Κάθε φοιτητής είναι νεότερος από κάποιο καθηγητή» Στον προτασιακό λογισμό η παραπάνω πρόταση δεν μπορεί παρά να είναι ένας πρωταρχικός (ατομικός) τύπος με συγκεκριμένη τιμή αληθείας, αλλά εμείς ενδιαφερόμαστε να αναδείξουμε μία πιο λεπτομερή εικόνα της λογικής δομής της πρότασης. Για το σκοπό αυτό μπορούμε να χρησιμοποιούμε κατηγορήματα της μορφής: S (Μαρία) που εκφράζει το ότι η Μαρία είναι φοιτήτρια Ι (Παναγιώτης) που εκφράζει το ότι ο Παναγιώτης είναι καθηγητής Y (Μαρία, Παναγιώτης) που εκφράζει ότι η Μαρία είναι νεότερη από τον Παναγιώτη Πρέπει να είμαστε προσεκτικοί στον ορισμό της σημασίας των κατηγορημάτων γιατί θα μπορούσε π.χ. η σημασία του Y να ερμηνεύεται με διαφορετικό τρόπο από τον επιθυμητό.

31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 4 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι V Θέλουμε επίσης να μπορούμε να εκφράζουμε κατηγορήματα με προσδιοριστές της μορφής για κάθε ή υπάρχει. Αυτό θα μπορούσε να γίνει αν γράφαμε S (  ) όπου η  θα μπορούσε να αντικαθιστάται από το όνομα του κάθε φοιτητή. Αυτό όμως δεν θα βόλευε γιατί θα είχε ως συνέπεια όταν θα θέλαμε να κωδικοποιήσουμε μία πρόταση για την εκτέλεση ενός προγράμματος να πρέπει να γράψουμε την ίδια πρόταση για κάθε κατάσταση του προγράμματος. Για το λόγο αυτό χρησιμοποιούμε μεταβλητές.

31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 5 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ V Οι μεταβλητές γράφονται ως x, y, z,... ή x 1, x 2, x 3 και ουσιαστικά είναι σύμβολα αντικαθιστάμενα από συγκεκριμένες τιμές. Με τη χρήση μεταβλητών μπορούμε να ορίσουμε και τυπικά την σημασία των κατηγορημάτων: S (x) : o x είναι φοιτητής Ι (x): ο x είναι καθηγητής Y (x, y) : ο x είναι νεότερος από τον y Η χρήση μεταβλητών δεν αρκεί για τον ορισμό κατηγορημάτων, αλλά χρειαζόμαστε και ποσοδείκτες όπως  (για κάθε),  (υπάρχει), που πάντα συνοδεύονται από όνομα μεταβλητής.

31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 6 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ VΙ ΠΑΡΑΔΕΙΓΜΑ «Κάθε φοιτητής είναι νεότερος από κάποιο καθηγητή» «Κάθε φοιτητής x είναι νεότερος από κάποιο καθηγητή y»  x (S(x)  (  y (I(y) ˄ Y(x, y)))) ΠΑΡΑΔΕΙΓΜΑ II «Δεν μπορούν να πετάξουν όλα τα πουλιά» Β (x) : το x είναι πουλί F (x): το x πετάει  (  x (Β(x)  F(x))) ή  x (Β(x) ˄  F(x))

31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 7 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ VΙI Οι δύο προτάσεις του τελευταίου παραδείγματος είναι σημασιολογικά ισοδύναμες. Εκείνο που χρειάζεται είναι μία αποδεικτική θεωρία που να επιτρέπει την εξαγωγή συμπερασμάτων συμβολικά () ή σημασιολογικά (╞). Επίσης, η αποτίμηση τύπων κατηγορηματικού λογισμού είναι αρκετά διαφορετική από τον υπολογισμό με βάση τους πίνακες αληθείας που είδαμε για τον προτασιακό λογισμό.

31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 8 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΤΕΧΝΙΚΕΣ ΤΥΠΙΚΗΣ ΕΠΑΛΗΘΕΥΣΗΣ Ι Τυπική επαλήθευση βάση απόδειξης Η περιγραφή του συστήματος δίνεται ως ένα σύνολο τύπων Γ σε κάποια γλώσσα λογικής και η ιδιότητα που πρέπει να επαληθευτεί δίνεται από κάποιο τύπο έστω . Η μέθοδος επαλήθευσης αποσκοπεί στο να βρεθεί μία απόδειξη ότι Γ . Τυπική επαλήθευση βάση μοντέλου Στις προσεγγίσεις που βασίζονται σε μοντέλα το σύστημα περιγράφεται από ένα πεπερασμένο μοντέλο M κατάλληλο για κάποια γλώσσα λογικής. Η ιδιότητα επίσης εκφράζεται από κάποιο τύπο  και η επαλήθευση είναι ένας υπολογισμός που εξακριβώνει αν ένα μοντέλο Μ ικανοποιεί τον τύπο  (Μ ╞  ). Αυτός ο έλεγχος γίνεται συνήθως αυτόματα.

31 Μαρτίου 2015 ΔΙΑΦΑΝΕΙΑ 9 ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. – ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ ΤΕΧΝΙΚΕΣ ΤΥΠΙΚΗΣ ΕΠΑΛΗΘΕΥΣΗΣ ΙΙ Μία αποδεικτική θεωρία όταν λέμε ότι είναι καλά ορισμένη (sound) και πλήρης (complete) και αυτό πρέπει να μπορεί να αποδειχθεί, εννοούμε ότι Γ  αν και μόνο αν Γ╞ , όπου το τελευταίο σημαίνει ότι για όλα τα μοντέλα M αν Μ╞ Γ, τότε Μ╞ . Άρα δυνητικά η τυπική επαλήθευση βάση μοντέλου είναι απλούστερη από την τυπική επαλήθευση βάση απόδειξης γιατί βασίζεται σε ένα μόνο μοντέλο και όχι σε ένα πιθανά άπειρο σύνολο μοντέλων.