Ε λληνικό Ι νστιτούτο Μ ετρολογίας Σύγκριση μεταξύ αναλυτικών και αριθμητικών μεθόδων υπολογισμού της αβεβαιότητας μέτρησης Χρήστος Μπαντής, Ph. D. Νοέμβριος,

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Θέμα: Επίπεδα Ιστογράμματα-Διαγραμματική Monte Carlo
Advertisements

Keller: Stats for Mgmt & Econ, 7th Ed
Περιγραφική Στατιστική
Ανάλυση Πολλαπλής Παλινδρόμησης
Πιθανοκρατικοί Αλγόριθμοι
Πιθανότητες & Τυχαία Σήματα Συσχέτιση
Σφαλματα ή αβεβαιοτητα των μετρησεων
Μια μέθοδος κατασκευής fractal επιφανειών παρεμβολής και εφαρμογή αυτών στην επεξεργασία εικόνων Το πρόβλημα Μας δίνεται μια εικόνα και θέλουμε να την.
ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ Β. Κώστογλου – Τμήμα Πληροφορικής ΑΤΕΙ-Θ
Εβδομάδα 3 Παρουσίαση Δεδομένων
Στατιστική Ι Παράδοση 5 Οι Δείκτες Διασποράς Διασπορά ή σκεδασμός.
Σχέση Απόδοσης- Κινδύνου στα Πλαίσια της Θεωρίας Χαρτοφυλακίου
3:11:52 PM Α. Λαχανάς.
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Θεωρία Στοχαστικών Σημάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών.
ΕΙΔΗ ΣΦΑΛΜΑΤΩΝ ΣΤΗ ΓΕΩΔΑΙΣΙΑ
ΙΣΧΥΣ Η χρονική συνάρτηση της στιγμιαίας ισχύος προκύπτει από τη σχέση
Ευστάθεια Συστημάτων Αυτομάτου Ελέγχου:
Η. Τζιαβός - Γ. Βέργος Σήματα και φασματικές μέθοδοι στη γεωπληροφορική 2013/2014ΑΠΘ/ΤΑΤΜ Τομέας Γεωδαισίας και Τοπογραφίας 3 ο Εξάμηνο Σήματα και Φασματικές.
ΚΕΦΑΛΑΙΟ 7 ΔΕΙΓΜΑΤΟΛΗΨΙΑ
ΚΕΦΑΛΑΙΟ 5 ΧΩΡΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ
ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ & ΕΝΔΕΙΚΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΛΗΣ
Σέρρες,Ιούνιος 2009 Τίτλος: Αυτόματος έλεγχος στο Scilab: Ανάπτυξη πακέτου για εύρωστο έλεγχο. Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα Επιβλέπων Καθηγητής.
Κεφάλαιο 2 Κίνηση σε μία διάσταση
ΚΕΦΑΛΑΙΟ 5 ΧΩΡΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ
ΧΡΗΜΑΤΟΔΟΤΗΣΗ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΣΤΗ ΓΕΩΡΓΙΑ
ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ
Βασικές Αρχές Μέτρησης
ΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΥΣΤΗΜΑΤΑ WDM Η πολυπλεξία μήκους κύματος (WDM) είναι μια τεχνική που υπόσχεται την πραγματοποίηση των αμιγώς οπτικών δικτύων,
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 2) 1 Τι είναι η πιθανότητα Έστω ότι δίνεται ένα πείραμα τύχης το οποίο καθορίζεται από το σύνολο των.
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 4) 1 Από κοινού κατανομή πολλών ΤΜ Ορίζεται ως από κοινού συνάρτηση κατανομής F(x 1, …, x n ) n τυχαίων.
1 Μελέτη κανόνων συμμετοχής σε ομότιμα δίκτυα επικοινωνίας μέσω προσομοίωσης Φοιτητής : Χρήστος Ι. Καρατζάς Επιβλέποντες Καθηγητές : Γ. Πολύζος – Κ. Κουρκουμπέτης.
ΚΕΦΑΛΑΙΟ 6 ΓΕΩΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ: ΣΗΜΕΙΑ
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΔΙΑΚΡΙΤΩΝ ΚΑΙ ΣΥΝΕΧΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ
ΣΤΑΤΙΣΤΙΚΗ Η επιστήμη που ασχολείται με την συλλογή δεδομένων,ανάλυση και ερμηνεία αυτών Η επιστήμη με τη χρήση της οποίας λαμβάνουμε αποφάσεις κάτω από.
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Αρχές επαγωγικής στατιστικής
Τι είναι η Κατανομή (Distribution)
Σχεδιασμός των Μεταφορών Ενότητα #5: Δειγματοληψία – Sampling. Δρ. Ναθαναήλ Ευτυχία Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών.
 Ο Νόμος των Μεγάλων Αριθμών είναι το θεώρημα που περιγράφει τον τρόπο με τον οποίο συμπεριφέρεται ένα συγκεκριμένο πείραμα, όταν ο αριθμός των επαναλήψεων.
1 Βιομετρία - Γεωργικός Πειραματισμός Ενότητα 12 : Κανονική κατανομή Γεράσιμος Μελετίου Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου.
Αρχές επαγωγικής στατιστικής Τμήμα :Νοσηλευτικής Πατρών Διδάσκουσα: Παναγιώταρου Αλίκη Διάλεξη 9.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Επαγωγική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής.
ΕΛΕΓΧΟΙ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Η πιο συνηθισμένη στατιστική υπόθεση είναι η λεγόμενη Υπόθεση Μηδέν H 0. –Υποθέτουμε ότι η εμφανιζόμενη διαφορά μεταξύ μιας.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Διάστημα εμπιστοσύνης για τη διακύμανση. Υπολογισμός Διακυμάνσεως και Τυπικής Αποκλίσεως Όταν τα δεδομένα αφορούν πληθυσμό – μ είναι ο μέσος του πληθυσμού.
ΗΛΕΚΤΡΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΗΣ.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΑ Πηγή: Βιοστατιστική [Σταυρινός / Παναγιωτάκος] Βιοστατιστική [Τριχόπουλος / Τζώνου / Κατσουγιάννη]
Έλεγχος υποθέσεων με την χ2 «χι -τετράγωνο» κατανομή
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ - ΑΣΥΜΜΕΤΡΙΑΣ - ΚΥΡΤΩΣΕΩΣ
Μεθοδολογία έρευνας και στατιστική – Δείγμα –Κατανομές
Δειγματοληψία Στην Επαγωγική στατιστική οδηγούμαστε σε συμπεράσματα και αποφάσεις για τις παραμέτρους ενός πληθυσμού με τη βοήθεια ενός τυχαίου δείγματος.
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΧΡΟΝΙΚΟυ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟυ ΕΡΓΩΝ
Μέθοδος ελαχίστων τετραγώνων – Μεθοδολογία παλινδρόμησης
Άσκηση 2-Περιγραφικής Στατιστικής
Η Έννοια της τυχαίας Διαδικασίας
Έλεγχος υποθέσεων με την χ2 «χι -τετράγωνο» κατανομή
Δρ. Γιώργος Μαρκάκης Καθηγητής Βιομετρίας Τ.Ε.Ι. Κρήτης
Εισαγωγή στην Στατιστική
Μορφές κατανομών Αθανάσιος Βέρδης.
Ομαδοποιημένη Κατανομή Συχνοτήτων
Παρουσίαση Αριθμητικών Χαρακτηριστικών 1) Διακριτών
Ψηφιακός Έλεγχος διάλεξη Παρατηρητές Ψηφιακός Έλεγχος.
Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα
Παρουσίαση Αριθμητικών Χαρακτηριστικών 1) Διακριτών
Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ.
ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ
ΚΑΤΑΝΟΜΕΣ Δ. Τσιπλακίδης
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΧΡΟΝΙΚΟυ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟυ ΕΡΓΩΝ
Μεταγράφημα παρουσίασης:

Ε λληνικό Ι νστιτούτο Μ ετρολογίας Σύγκριση μεταξύ αναλυτικών και αριθμητικών μεθόδων υπολογισμού της αβεβαιότητας μέτρησης Χρήστος Μπαντής, Ph. D. Νοέμβριος, 2005

Συνοπτικά... Στην εργασία αυτή παρουσιάζουμε: Τις προϋποθέσεις για τον υπολογισμό της αβεβαιότητας μίας μέτρησης με την μέθοδο διάδοσης των αβεβαιοτήτων (Law of Propagation of Uncertainties-LPU), όπως αυτή περιγράφεται στο “Guide to the Expression of Uncertainty in Measurement”. Τον τρόπο υπολογισμού της αβεβαιότητας μίας μέτρησης με αριθμητικές μεθόδους Monte Carlo, μέθοδο διάδοσης των κατανομών πιθανότητας (propagation of probability distributions). Την ανάγκη της επιβεβαίωσης (validation) της μεθόδου της διάδοσης των αβεβαιοτήτων με την βοήθεια των αριθμητικών μεθόδων.

Επιλογή Μοντέλου... Αρχικά επιλέγουμε την συνάρτηση που περιγράφει την διαδικασία της μέτρησής μας. όπου x i είναι οι μετρήσιμες ποσότητες και παράμετροι του μαθηματικού μοντέλου. (1)

Επιλογή κατανομών των x i...

Μέθοδος διάδοσης αβεβαιοτήτων όπου και για r(x i,x j )=0 (2) (3)

Μέθοδος διάδοσης αβεβαιοτήτων Γραμμικότητα μοντέλου. Ισχύς του κεντρικού οριακού θεωρήματος. Συμμετρικές κατανομές. Καμίας παραμέτρου η αβεβαιότητα δεν είναι τόσο μεγάλη ώστε να κυριαρχεί όλων των άλλων. Προϋποθέσεις εφαρμογής...

Μέθοδος διάδοσης κατανομών πιθανότητας Η επιλογή του μοντέλου και των κατανομών. Δημιουργία Μ ανεξάρτητων τυχαίων τιμών για κάθε μία από τις Ν παραμέτρους που ακολουθούν τις επιλεγμένες κατανομές. {(x 11,x 21...x N1 ), (x 12,x 22...x N2 ), …, (x 1M,x 2M...x NM )} Για μεγάλο αριθμό Μ υπολογίζουμε τις τιμές των y i, προσεγγίζουμε τη συνάρτησης αθροιστικής πυκνότητας πιθανότητας, και υπολογίζουμε την αναμενόμενη τιμή, την τυπική απόκλιση, καθώς και το διάστημα εμπιστοσύνης για το απαιτούμενο ποσοστό εμπιστοσύνης.

Παράδειγμα 1 Η αβεβαιότητα μίας παραμέτρου είναι τόσο μεγάλη ώστε να κυριαρχεί όλων των άλλων. Έστω ότι η μέτρηση περιγράφεται από το άθροισμα τεσσάρων τετραγωνικών κατανομών μία από τις οποίες έχει πολύ μεγαλύτερο εύρος από τις άλλες. Η μέση τιμή όλων των μεταβλητών είναι ίση με μηδέν και τυπική αβεβαιότητα u(x 1 )=10 και u(x 2 )=u(x 3 )=u(x 4 )=1). Μετρήσεις με απλά παχύμετρα, χάρακες και υδραργυρικά θερμόμετρα, στις οποίες το σφάλμα ανάγνωσης είναι η κύρια πηγή της αβεβαιότητας μπορεί να ανήκουν σε αυτή την κατηγορία.

Κατανομή της παραμέτρου εξόδου Y όπως υπολογίζεται με την μέθοδο διάδοσης των αβεβαιοτήτων (συνεχής μαύρη γραμμή) και από Monte Carlo Simulation (ιστόγραμμα). Οι διακεκομμένες και διακεκομμένες με τελείες γραμμές ορίζουν διάστημα εμπιστοσύνης όπως αυτό προκύπτει από τις δύο μεθόδους αντίστοιχα.

Αποτελέσματα αθροιστικού μοντέλου Από το γράφημα και τον παραπάνω πίνακα βλέπει κανείς ότι η στατιστική κατανομή της παραμέτρου εξόδου δεν είναι κανονική και το διάστημα εμπιστοσύνης υπερεκτιμάται. Μέθοδοςyu(y)u(y) Διευρυμένη Αβεβαιότητα (U) Διάστημα Εμπιστοσύνης % MCS , 17.4 LPU , 20.3

Παράδειγμα 2 Απλό μη γραμμικό μοντέλο. Έστω ότι θέλουμε να υπολογίσουμε το διάστημα που διήνυσε ένα αυτοκίνητο που ξεκινά από την ηρεμία και επιταχύνει με σταθερή επιτάχυνση α=1±0.1 m/s 2, για t=20±3 sec τα οποία τα μετρούμε με ένα απλό ρολόι. Εξίσωση μοντέλου:

Κατανομή της παραμέτρου εξόδου Y όπως υπολογίζεται με την μέθοδο διάδοσης των αβεβαιοτήτων (συνεχής μαύρη γραμμή) και από Monte Carlo Simulation (ιστόγραμμα). Οι διακεκομμένες και διακεκομμένες με τελείες γραμμές ορίζουν διάστημα εμπιστοσύνης όπως αυτό προκύπτει από τις δύο μεθόδους αντίστοιχα.

Πίνακας αποτελεσμάτων Μέθοδοςy (m)u(y) (m) Διευρυμένη Αβεβαιότητα (U) (m) Διάστημα Εμπιστοσύνης % (m) MCS , LPU , Από το γράφημα και τον παραπάνω πίνακα βλέπει κανείς ότι η στατιστική κατανομή της παραμέτρου εξόδου δεν είναι κανονική και το διάστημα εμπιστοσύνης υποεκτιμάται, ενώ διαφορά μεταξύ των δύο μεθόδων παρατηρείται και στην μέση τιμή.

Συμπεράσματα Η σύγκριση αναλυτικών (όπως αυτές περιγράφονται στο “Guide to the expression of uncertainty in measurement”-GUM) και αριθμητικών (Monte Carlo) μεθόδων υπολογισμού της αβεβαιότητας μέτρησης οδηγούν σε αποτελέσματα που συμφωνούν μεταξύ τους μόνον όταν όλες οι προϋποθέσεις εφαρμογής του αναλυτικού υπολογισμού πληρούνται. Συνεπώς προσεκτικός έλεγχος των περιπτώσεων όπου εφαρμόζεται η μέθοδος διάδοσης των αβεβαιοτήτων πρέπει πάντα να προηγείται. Η χρήση της μεθόδου Monte Carlo λόγω της σημερινής υπολογιστικής δύναμης των προσωπικών υπολογιστών μπορεί να χρησιμοποιηθεί στα περισσότερα μοντέλα μέτρησης και να αποτελέσει μία γρήγορη μέθοδο για την επιβεβαίωση (validation) ή ακόμη και την αντικατάσταση των αναλυτικών μεθόδων υπολογισμού.

Βιβλιογραφία ISO, Guide to the expression of uncertainty in measurement. (International Organization for Standardization, 1995). ISO, Guide to the expression of uncertainty in measurement. Supplement 1. Numerical methods for the propagation of distributions (International Organization for Standardization, 2004). EA-4/02, Expression of the Uncertainty of Measurement in Calibration (European co-operation for Accreditation, 1999). C. F. Dietrich, Uncertainty, Calibration and Probability (Adam Hilger, Bristol, 1991). I. Lira, Evaluating the Measurement Uncertainty (IOP, Bristol and Philadelphia, 2002).