Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία)
Advertisements

Γραφήματα & Επίπεδα Γραφήματα
© 2002 Thomson / South-Western Slide 2-1 Κεφάλαιο 2 Διαγράμματα και Γραφήματα Περιγράφικής Στατιστικής.
«Κυβερνητικές προτάσεις για το Ασφαλιστικό» © VPRC – Μάρτιος / Δ.1 © VPRC – Μάρτιος 2008 ΚΥΒΕΡΝΗΤΙΚΕΣ ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΤΟ ΑΣΦΑΛΙΣΤΙΚΟ.
Ερωτηματολόγιο Συλλογής Απαιτήσεων Εφαρμογών Υψηλών Επιδόσεων
Μάρτιος 2011 Βαρόμετρο ΕΒΕΘ - Καταναλωτές. “Η καθιέρωση ενός αξιόπιστου εργαλείου καταγραφής του οικονομικού, επιχειρηματικού και κοινωνικού γίγνεσθαι.
Αριθμητική με σφηνοειδείς αριθμούς Ν. Καστάνη
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Επίπεδα Γραφήματα (planar graphs)
Γραφήματα & Επίπεδα Γραφήματα
Τα στοιχειώδη περί γεωδαιτικών υπολογισμών
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 2: Μονοπάτια και Κύκλοι (Euler) Data Engineering Lab.
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Ρωτήθηκαν 67 άτομα μιας σχολής χορού και έδωσαν τις εξής απαντήσεις: Μ,Μ,Μ,Μ,Μ,Μ,Μ,Μ,Μ,Μ,L,L,L,L,L,L, L,L,L,L,T,T,T,T,T,T,T,M,M,M,M,M,M,M,M,M,M,L,L,L,L,L,L,L,T,T,T,T,T,M,M,
Page  1 Ο.Παλιάτσου Γαλλική Επανάσταση 1 ο Γυμνάσιο Φιλιππιάδας.
Ανάλυση του λευκού φωτός και χρώματα
© GfK 2012 | Title of presentation | DD. Month
-17 Προσδοκίες οικονομικής ανάπτυξης στην Ευρώπη Σεπτέμβριος 2013 Δείκτης > +20 Δείκτης 0 a +20 Δείκτης 0 a -20 Δείκτης < -20 Σύνολο στην Ευρωπαϊκή Ένωση:
+21 Προσδοκίες οικονομικής ανάπτυξης στην Ευρώπη Δεκέμβριος 2013 Δείκτης > +20 Δείκτης 0 να +20 Δείκτης 0 να -20 Δείκτης < -20 Σύνολο στην Ευρωπαϊκή Ένωση:
Αλγόριθμοι και Πολυπλοκότητα
Βαρόμετρο ΕΒΕΘ - Καταναλωτές Σεπτέμβριος “Η καθιέρωση ενός αξιόπιστου εργαλείου καταγραφής του οικονομικού, επιχειρηματικού και κοινωνικού γίγνεσθαι.
Κεφάλαιο 2ο Πεπερασμένα αυτόματα.
Γραφήματα & Επίπεδα Γραφήματα
Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους Ν-k πρόβλημα μεγέθους k.
1 AYTOΣ Ο ΠΛΑΝΗΤΗΣ ΕΙΝΑΙ ΠΟΛΥ ΕΝΔΙΑΦΕΡΩΝ ΤΟΠΟΣ ΓΙΑ ΝΑ ΖΕΙ ΚΑΝΕΙΣ….
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Συναρτησιακές Εξαρτήσεις.
ΙΣΟΛΟΓΙΣΜΟΣ ΒΑΣΕΙ Δ.Λ.Π. (ΕΝΑΡΞΗΣ)
1 Θεματική Ενότητα Γραφήματα & Επίπεδα Γραφήματα.
Προσεγγιστικοί Αλγόριθμοι
ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
Αποκεντρωμένη Διοίκηση Μακεδονίας Θράκης ∆ιαχείριση έργων επίβλεψης µε σύγχρονα µέσα και επικοινωνία C2G, B2G, G2G Γενική Δ/νση Εσωτερικής Λειτουργίας.
1/5/ ΧΡΗΣΕΙΣ ΤΗΣ ΗΛΙΑΚΗΣ ΑΝΤΙΝΟΒΟΛΙΑΣ 1/5/ (πηγή: HELIOAKMI).
Βαρόμετρο ΕΒΕΘ Μάρτιος “Η καθιέρωση ενός αξιόπιστου εργαλείου καταγραφής του οικονομικού, επιχειρηματικού και κοινωνικού γίγνεσθαι του Νομού Θεσσαλονίκης”
ΚΕΦΑΛΑΙΟ 3 Περιγραφική Στατιστική
1 Τοπικές βλάβες από δήγματα όφεων Κουτσουμπού Γεωργία Ειδικευόμενη Γενικής Ιατρικής ΓΚΑ Αθήνα, 18 η Ιουλίου 2002.
Βαρόμετρο ΕΒΕΘ Μάρτιος “Η καθιέρωση ενός αξιόπιστου εργαλείου καταγραφής του οικονομικού, επιχειρηματικού και κοινωνικού γίγνεσθαι του Νομού Θεσσαλονίκης”
Δομές Αναζήτησης TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A Χειριζόμαστε ένα σύνολο στοιχείων όπου το κάθε.
1 Α. Βαφειάδης Αναβάθμισης Προγράμματος Σπουδών Τμήματος Πληροφορικής Τ.Ε.Ι Θεσσαλονίκης Μάθημα Προηγμένες Αρχιτεκτονικές Υπολογιστών Κεφαλαίο Τρίτο Συστήματα.
Δομές Δεδομένων 1 Στοίβα. Δομές Δεδομένων 2 Στοίβα (stack)  Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή – πρώτη εξαγωγή)  Περιορισμένος.
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Δευτέρα, 12 Ιανουαρίου 2015Δευτέρα, 12 Ιανουαρίου 2015Δευτέρα, 12 Ιανουαρίου 2015Δευτέρα, 12 Ιανουαρίου.
Γράφοι: Προβλήματα και Αλγόριθμοι
Σχεδιαση Αλγοριθμων - Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο1 Άπληστοι αλγόριθμοι βελτιστοποίησης Προβλήματα βελτιστοποίησης λύνονται με μια σειρά επιλογών.
Dr. Holbert Νικ. Α. Τσολίγκας Χρήστος Μανασής
ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ & ΕΝΔΕΙΚΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΛΗΣ
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
ANAKOINWSH H 2η Ενδιάμεση Εξέταση μεταφέρεται στις αντί για , την 24 Νοεμβρίου στις αίθουσες ΧΩΔ και 110 λόγω μη-διαθεσιμότητας.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Βαρόμετρο ΕΒΕΘ - Καταναλωτές Μάρτιος “Η καθιέρωση ενός αξιόπιστου εργαλείου καταγραφής του οικονομικού, επιχειρηματικού και κοινωνικού γίγνεσθαι.
Άσκηση 7 Οι πλευρές του ορθογωνίου τριγώνου ΑΒC είναι x-14, x, x+4 και η περίμετρος του είναι 80m. Να υπολογίσετε την τιμή του x και στη συνέχεια να επαληθεύσετε.
ΜΑΘΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗ ΜΕΤΑΓΓΙΣΗ ΑΙΜΑΤΟΣ - ΑΙΜΟΔΟΣΙΑ
ΒΥΖΑΝΤΙΝΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗ
Δομές Δεδομένων - Ισοζυγισμένα Δυαδικά Δένδρα (balanced binary trees)
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 2: Μονοπάτια και Κύκλοι (Hamilton) Data Engineering Lab.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 4: Συνδεσμικότητα Data Engineering Lab 1.
+19 Δεκέμβριος 2014 Δείκτης > +20 Δείκτης 0 έως +20 Δείκτης 0 έως -20 Δείκτης < -20 Συνολικά της ΕΕ: +5 Δείκτης > +20 Δείκτης 0 έως +20 Δείκτης 0 έως -20.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Βαρόμετρο ΕΒΕΘ Σεπτέμβριος “Η καθιέρωση ενός αξιόπιστου εργαλείου καταγραφής του οικονομικού, επιχειρηματικού και κοινωνικού γίγνεσθαι του Νομού.
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 4 Δ ΕΝΔΡΑ Σταύρος Δ. Νικολόπουλος 1.
Δένδρα ΘΕΩΡΙΑ ΓΡΑΦΩΝ Εργαστήριο Τεχνολογίας & Επεξεργασίας Δεδομένων Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 3: Δένδρα.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές TSP, Μέτρα κεντρικότητας, Dijkstra Data Engineering Lab.
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία & Αλγόριθμοι Γράφων
Θεωρία & Αλγόριθμοι Γράφων Αποστάσεις
Θεωρία & Αλγόριθμοι Γράφων Μονοπάτια & Κύκλοι (Hamilton)
ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ II
Μεταγράφημα παρουσίασης:

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 3 ΜΟΝΟΠΑΤΙΑ ΚΥΚΛΟΙ Σταύρος Δ. Νικολόπουλος

Εισαγωγή (1) Περίπατος (walk): ακολουθία από κόμβους και ακμές. Ίχνος (trail): περίπατος που μια ακμή δεν εμφανίζεται πάνω από μία φορά. Μονοπάτι (path): ίχνος που ένας κόμβος δεν εμφανίζεται πάνω από μία φορά. Αρχή-τέρμα περιπάτου, ίχνους, μονοπατιού. Τερματικοί και εσωτερικοί κόμβοι.

Εισαγωγή (2)

Αποστάσεις (1) Pn = μονοπάτι με n κόμβους Πλήθος Ακμών (κόμβων) 2 2 3

Αποστάσεις (2)

Αποστάσεις (3) v H rad(G)=2 diam(G)=4

Αποστάσεις (4)

Αποστάσεις (5) x y z z : κόμβος του κέντρου

Αποστάσεις (6) Κέντρο: το υπογράφημα με την ελάχιστη εκκεντρικότητα

Κέντρο και Μέσο ενός Γραφήματος dist(y) : 1 1 2 3

Κέντρο και Μέσο ενός Γραφήματος Γραφήματα για το πρόβλημα του ταχυδρομείου Γράφημα για επίδειξη διαφοράς κέντρου και μέσου

Γραφήματα Euler (1) Leonard Euler, Ελβετός, πατέρας Θεωρίας Γραφημάτων, 1736 πρόβλημα γεφυρών Koenigsburg Πρόβλημα: είναι δυνατόν σε κάθε γράφημα να βρεθεί κύκλωμα (= κλειστό ίχνος) που να περνά από όλες τις ακμές? Eulerian γράφημα: περιέχει γραμμή Euler Semi-Eulerian γράφημα: περιέχει ανοικτό ίχνος Euler Ψυχαγωγικά προβλήματα, μονοκονδυλιές περιέχει κλειστό ίχνος (κύκλωμα) περιέχει ανοικτό ίχνος (μονοπάτι)

Γραφήματα Euler (2)

Αλγόριθμοι Εύρεσης Κύκλων Euler (1) Ti G-E(Ti)

Αλγόριθμοι Εύρεσης Κύκλων Euler (2)

Αλγόριθμοι Εύρεσης Κύκλων Euler (3) Γράφημα για Αλγόριθμο Tucker

Αλγόριθμοι Εύρεσης Κύκλων Euler (4) Αρχικά: (α) 1  2  5  1 (β) 5  4  6  5 (γ) 2  3  4  2 Τελικά: 1  2  3  4  2  5  4  6  5

Πρόβλημα Κινέζου Ταχυδρόμου (1) Τέθηκε από κινέζο μαθηματικό (1962) Πρόβλημα: ένας ταχυδρόμος ξεκινάει από το γραφείο του, πρέπει να περάσει απ’ όλους τους δρόμους και επιστρέφει στο γραφείο του, το συντομότερο !!!! Θεωρούμε απλό γράφημα (όχι έμβαρο) και αναζητούμε Eulerian διαδρομή. Αν το γράφημα δεν είναι Eulerian, τότε πρέπει κάποιες ακμές να διασχισθούν περισσότερο από μία φορές. Πόσες? Το μήκος l της βέλτιστης λύσης είναι |Ε| ≤ l ≤ 2|Ε|

Πρόβλημα Κινέζου Ταχυδρόμου (2)

Hamiltonian Γραφήματα (1)

Hamiltonian Γραφήματα (2)

Hamiltonian Γραφήματα (3)

Hamiltonian Γραφήματα (4)

Hamiltonian Γραφήματα (5)

Αλγόριθμος Εύρεσης Κύκλου Hamilton Πίνακας reachability (πολλαπλασιασμός πινάκων και concatenation των εισόδων) Προκύπτει πίνακας μετά από n-1 πολλαπλασιασμούς Ελέγχεται αν οι είσοδοι αυτού είναι Hamiltonian μονοπάτια/κύκλοι

Αλγόριθμος Εύρεσης Κύκλου Hamilton B C D E B C D E A AB BC CD CE DE EA EB ED M M1 Διαδοχικοί πολλαπλασιασμοί πινάκων Μi = Mi-1 * M, 1 < i < n

Αλγόριθμος Εύρεσης Κύκλου Hamilton B C D E B C D E A AB BC CD CE DE EA EB ED M M1 Για κάθε στοιχείο του Μi ισχύει: Μi(r, s) = Σt=1,n Mi-1 (r, t) * M(t, s), 1 < i < n Το σύμβολο * δηλώνει παράθεση των αντίστοιχων στοιχείων των Μi-1 και M, αν κανένα από τα δύο στοιχεία δεν είναι 0, και το σύμβολο του Μ δεν συμπεριλαμβάνεται στην αντίστοιχη συμβολοσειρά του Μi-1.

Αλγόριθμος Εύρεσης Κύκλου Hamilton AB BC CD CE DE EA EB ED B C D E A * M1 M Μ2 = M1 * M, Για το (1, 3) του Μ2  Μ2(1, 3) = Σt=1,5 M1 (1, t) * M(t, 3) __________________________________________________________________________________________________ Γραμμή 1 του Μ1 Στήλη 3 του Μ ------------------------- Στοιχείο (1,3) του Μ2 0 ΑΒ 0 0 0 0 C 0 0 0 ------------------------------------------ 0 ΑΒC 0 0 0

Αλγόριθμος Εύρεσης Κύκλου Hamilton AB BC CD CE DE EA EB ED B C D E A * M1 M ABC BCD BCE CEA CEB CED CDE DEA DEB EAB EBC M2

Αλγόριθμος Εύρεσης Κύκλου Hamilton AB BC CD CE DE EA EB ED B C D E A * M1 M ABCED ABCDE BCDEA BC CDEAB DEABC EABDC M4

Περιοδεύων Πωλητής

Προσεγγιστικοί Αλγόριθμοι για το Προβλήματος του Περιοδεύοντος Πωλητή (1) Επίλυση με ευριστικές υποβέλτιστες λύσεις Μέτρο σύγκρισης είναι η ποσότητα 1 ≤ L / Lopt = a

Προσεγγιστικοί Αλγόριθμοι για το Προβλήματος του Περιοδεύοντος Πωλητή (2)

Προσεγγιστικοί Αλγόριθμοι για το Προβλήματος του Περιοδεύοντος Πωλητή (3)

Προσεγγιστικοί Αλγόριθμοι για το Προβλήματος του Περιοδεύοντος Πωλητή (4) Μέθοδος με ελάχιστα ζευγνύοντα δένδρα (3,1,2,4,5,6,3) βάρος 212 Μέθοδος με διαδοχικές ανταλλαγές κορυφών (3,4,5,6,1,2,3) βάρος 237 (3,6,5,4,1,2,3) βάρος 210 (3,6,5,4,2,1,3) βάρος 193 (3,6,1,2,4,5,3) βάρος 192

Προσεγγιστικοί Αλγόριθμοι για το Προβλήματος του Περιοδεύοντος Πωλητή (5) Μέθοδος πρακτικής εύρεσης κάτω ορίου σε πρόβλημα tsp: Θεωρούμε ελάχιστο ζευγνύον δένδρο στο γράφημα G-v Λαμβάνουμε δύο ακμές προσπίπτουσες στο v με ελάχιστο βάρος και εισάγουμε mst (minimum spanning tree) Aν v = 5, τότε w(T) = 122, 122+21+35 = 178 κάτω όριο

Άπειρα Γραφήματα (1) Οι κόμβοι είναι σημεία του επιπέδου με ακέραιες συντεταγμένες, ενώ οι ακμές ενώνουν κορυφές σε απόσταση 1 Σε άπειρο γράφημα δεν υπάρχει Eulerian κύκλωμα ή Hamiltonian κύκλος, αλλά υπάρχουν τα αντίστοιχα μονοπάτια Μονοδρομικό (one-way) Eulerian/Hamiltonian μονοπάτι είναι το μονοπάτι που ξεκινά από μία κορυφή και επεκτείνεται επ’άπειρο (space filling curve)

Άπειρα Γραφήματα (2) Peano/z-order Hilbert

Μαγικά Τετράγωνα (1) Γραμμές, στήλες και διαγώνιοι έχουν ίσο άθροισμα Μεγάλη προϊστορία/ιστορία-Dührer 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1 23 1 2 20 19 22 16 9 14 4 5 11 13 15 21 8 12 17 10 18 7 25 24 6 3

Μαγικά Τετράγωνα (2) Αλγόριθμοι κατασκευής μαγικών τετραγώνων (περιττής τάξης): Μέθοδος Bachet (με ρόμβο) Με το τέχνασμα των τριών τυχαίων αριθμών (π.χ. 3,2,5) Αντικαθιστώντας τους περιττούς αριθμούς 3-17 στις θέσεις 1-9 Προσθέτοντας σε κάθε θέση τον ίδιο αριθμό Μαγικό λέγεται το γράφημα όπου το άθροισμα των επιγραφών των ακμών που προσπίπτουν σε όλους τους κόμβους είναι ίσο περιττής τάξης

Μαγικά Τετράγωνα (3) Μέθοδος Bachet

Μαγικά Τετράγωνα (4) Μέθοδος Bachet

Μαγικά Τετράγωνα (5) Θεώρημα: αν ένας διμερές γράφημα μπορεί να αποσυντεθεί σε 2 Hamiltonian κύκλους, τότε το γράφημα είναι μαγικό Αντιμαγικό λέγεται το γράφημα όπου τα αθροίσματα των επιγραφών των ακμών που προσπίπτουν σε όλους τους κόμβους είναι άνισα Πλήθος μαγικών αντικειμένων (ομόκεντρα τετράγωνα, τετράγωνα με ντόμινο, πολύγωνα κλπ)

Εφαρμογές Κίνηση αλόγων (knight tour) σε σκακιέρα ή κάθε είδους πλαίσιο Hamiltonian μονοπάτια και κύκλοι DeMoivre (κίνηση περιμετρικά) Εuler (μαγικό τετράγωνο), κλπ Τοποθέτηση προσώπων σε τραπέζι Θεώρημα: για διαφορετικούς Hamiltonian κύκλους: (n-1)/2 Στιγμιαία παραφροσύνη