Independent Component Analysis (ICA) Ιανουάριος 2012.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Bayes Classifiers.
Advertisements

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΗΥ430 Ψηφιακες Επικοινωνιες Μαθημα 2
Πιθανότητες & Τυχαία Σήματα
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ.
Πιθανότητες & Τυχαία Σήματα Συσχέτιση
ΗΥ430 ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
Υπόδειγμα μεγιστοποίησης τυχαίας χρησιμότητας (random utility maximization model) Υπόδειγμα μεγιστοποίησης τυχαίας χρησιμότητας (random utility maximization.
Το μοντέλο της απλής παλινδρόμησης
Μια Μπεϋζιανή Μέθοδος για την Επαγωγή Πιθανοτικών Δικτύων από Δεδομένα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧ/ΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ B. Μεγαλοοικονόμου, Χ. Μακρής.
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 8 ο Ανίχνευση Ακμών. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα.
Εισαγωγικές Έννοιες Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Διάλεξη 5η: Σύνταξη της μήτρας του γραμμικού προγραμματισμού κατά την εφαρμογή του στη γεωργική παραγωγή Η μήτρα είναι ένας πίνακας που παρουσιάζει τους.
Αναγνώριση Προτύπων.
Αναγνώριση Προτύπων.
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 5) 1 Τυχαία συνάρτηση Μία τυχαία συνάρτηση (ΤΣ) είναι ένας κανόνας με τον οποίο σε κάθε αποτέλεσμα ζ.
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 3) 1 Από κοινού κατανομή δύο ΤΜ Στην περίπτωση που υπάρχουν δύο ΤΜ ενδιαφέροντος, η συνάρτηση κατανομής.
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Θεωρία Στοχαστικών Σημάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών.
X ΙΣΟΡΡΟΠΙΑ ΕΙΔΗ ΔΥΝΑΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ t x x ΠΕΡΙΟΔΙΚΗ ΧΑΟΣ t t.
Αριθμητικές Μέθοδοι Βελτιστοποίησης Θεωρία & Λογισμικό Τμήμα Πληροφορικής - Πανεπιστήμιο Ιωαννίνων Ι. Η. Λαγαρής.
Ανάλυση Πολλαπλής Παλινδρόμησης
ΚΕΦΑΛΑΙΟ 7 ΔΕΙΓΜΑΤΟΛΗΨΙΑ
ΚΕΦΑΛΑΙΟ 5 ΧΩΡΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ
ΗΥ120 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Συναρτησεις Boole.
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Θεωρία Στοχαστικών Σημάτων: Εκτίμηση φάσματος, Παραμετρικά μοντέλα ΒΕΣ.
ΚΕΦΑΛΑΙΟ 5 ΧΩΡΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ
ΗΥ430 Ψηφιακες Επικοινωνιες
ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Εισηγητής: Δρ. Αθανάσιος Νικολαΐδης.
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 2) 1 Τι είναι η πιθανότητα Έστω ότι δίνεται ένα πείραμα τύχης το οποίο καθορίζεται από το σύνολο των.
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 4) 1 Από κοινού κατανομή πολλών ΤΜ Ορίζεται ως από κοινού συνάρτηση κατανομής F(x 1, …, x n ) n τυχαίων.
Εργαστήριο Δασικής Διαχειριστικής & Τηλεπισκόπησης Δασική Διαχειριστική Ι Διδάσκων Δημήτριος Καραμανώλης, Επίκουρος Καθηγητής Μάθημα 3 ο.
ΚΕΦΑΛΑΙΟ 10 ΠΑΛΙΝΔΡΟΜΗΣΗ
Computational Imaging Laboratory ΤΜΗΥΠ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Υπολογιστική Όραση.
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΔΙΑΚΡΙΤΩΝ ΚΑΙ ΣΥΝΕΧΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ
Πηγή: Βιοστατιστική [Β.Γ. Σταυρινός, Δ.Β. Παναγιωτάκος]
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 8 ο Ανίχνευση Ακμών. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα.
Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Ροές Δεδομένων (3 ο Μέρος)
Σχεδιασμός των Μεταφορών Ενότητα #5: Δειγματοληψία – Sampling. Δρ. Ναθαναήλ Ευτυχία Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών.
Ψηφιακές Επικοινωνίες Ι Ενότητα 3: Αποδιαμόρφωση και Ανίχνευση Βασικής Ζώνης Επίκουρος Καθηγητής Βασίλης Στυλιανάκης Πολυτεχνική Σχολή Πανεπιστημίου Πατρών.
Εργαστήριο Στατιστικής (9 ο Εργαστήριο) Συσχετίσεις μεταξύ μεταβλητών (ερωτήσεων)
ΕΛΕΓΧΟΙ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Η πιο συνηθισμένη στατιστική υπόθεση είναι η λεγόμενη Υπόθεση Μηδέν H 0. –Υποθέτουμε ότι η εμφανιζόμενη διαφορά μεταξύ μιας.
ΗΛΕΚΤΡΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΗΣ.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΑ Πηγή: Βιοστατιστική [Σταυρινός / Παναγιωτάκος] Βιοστατιστική [Τριχόπουλος / Τζώνου / Κατσουγιάννη]
Ανάλυση επιβίωσης Επαναληπτικό μάθημα. Ανάλυση επιβίωσης Μελέτη κατανομής χρόνου από ένα καλά ορισμένο σημείο έναρξης έως την εμφάνιση ενός γεγονότος.
Στατιστική Ανάλυση. Ποιοτικές και ποσοτικές μέθοδοι Ποιες είναι οι διαφορές; Πότε χρησιμοποιούνται; Πότε κάνω στατιστική ανάλυση;
Έβδομο μάθημα Ψηφιακά Ηλεκτρονικά.
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΧΡΟΝΙΚΟυ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟυ ΕΡΓΩΝ
Προσομοίωση και Μοντέλα Συστημάτων (Μέρος B)
Independent Component Analysis (ICA)
ΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, διαλ. 5
Μέθοδος ελαχίστων τετραγώνων – Μεθοδολογία παλινδρόμησης
Άσκηση 2-Περιγραφικής Στατιστικής
Η Έννοια της τυχαίας Διαδικασίας
O Θόρυβος στα Συστήματα Τηλεπικοινωνιών
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II
Η Έννοια της τυχαίας Διαδικασίας
Ψηφιακός Έλεγχος διάλεξη Παρατηρητές Ψηφιακός Έλεγχος.
ΚΑΤΑΝΟΜΕΣ Δ. Τσιπλακίδης
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(7)
Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΧΡΟΝΙΚΟυ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟυ ΕΡΓΩΝ
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Τμήμα Λογιστικής και Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής
Μη Γραμμικός Προγραμματισμός
Εισαγωγή στα Προσαρμοστικά Συστήματα
Ορισμός Με τον όρο Χρονοσειρές εννοούμε μια σειρά από παρατηρήσεις που παίρνονται σε ορισμένες χρονικές στιγμές ή περιόδους που ισαπέχουν μεταξύ τους.
Μεθοδολογία Έρευνας Διάλεξη 9η: Ανάλυση Ποσοτικών Δεδομένων
Επαγωγική Στατιστική Γραμμική παλινδρόμηση-Linear Regression Χαράλαμπος Γναρδέλλης Εφαρμογές Πληροφορικής στην Αλιεία και τις Υδατοκαλλιέργειες.
Μεταγράφημα παρουσίασης:

Independent Component Analysis (ICA) Ιανουάριος 2012

PCA vs ICA

PCA ICA

Cocktail Party Independent Sources Observations s1s1 s2s2 x1x1 x2x2

Cocktail Party Independent Sources Observations s1s1 s2s2 x1x1 x2x2 Using Vector-Matrix notation

Ανεξαρτησία Τυχαίων Μεταβλητών Δύο τυχαίες μεταβλητές είναι ανεξάρτητες όταν η πληροφορία γα την τιμή της μίας δεν προσφέρει καμία επιπλέον πληροφορία για την τιμή της άλλης. Όταν η από κοινού pdf είναι παραγοντοποιήσιμη:,

Ανεξαρτησία Τυχαίων Μεταβλητών s1s1 s2s2 x1x1 x2x2

s1s1 s2s2 x1x1 x2x2 PC 2 PC 1 IC 1 IC 2

Κεντρικό Οριακό Θεώρημα (CLT) Η κατανομή του αθροίσματος ανεξάρτητων τυχαίων μεταβλητών τείνει προς την Gaussian κατανομή.

Κεντρικό Οριακό Θεώρημα (CLT) Η κατανομή του αθροίσματος ανεξάρτητων τυχαίων μεταβλητών τείνει προς την Gaussian κατανομή. Observed signal=IC1IC2 ICn m1m1 + m 2 ….+ m n toward GaussianNon-Gaussian

“Nongaussian is Independent” Έστω γραμμικός συνδυασμός των παρατηρήσεων Αν το διάνυσμα w ισούται με μία από τις γραμμές του Α -1 τότε το y ισούται με μία από τις ανεξάρτητες συνιστώσες.

“Nongaussian is Independent” Έστω γραμμικός συνδυασμός των παρατηρήσεων Αν το διάνυσμα w ισούται με μία από τις γραμμές του Α -1 τότε το y ισούται με μία από τις ανεξάρτητες συνιστώσες. Με αλλαγή μεταβλητών τότε

“Nongaussian is Independent” Έστω γραμμικός συνδυασμός των παρατηρήσεων Αν το διάνυσμα w ισούται με μία από τις γραμμές του Α -1 τότε το y ισούται με μία από τις ανεξάρτητες συνιστώσες. Με αλλαγή μεταβλητών τότε Το άθροισμα έστω και δύο τυχαίων μεταβλητών είναι περισσότερο «Γκαουσιανό» από καθεμία ξεχωριστά. Η ιδιότητα αυτή ελαχιστοποιείται όταν ο γραμμικός συνδυασμός γίνεται ίσος κάποιο από τα s i.

“Nongaussian is Independent” Αρκεί λοιπόν ένα αξιόπιστο μέτρο για τη «μή Γκαουσιανότητα» από τη βελτιστοποίηση του οποίου θα προκύψουν οι ανεξάρτητες συνιστώσες. Σε χώρο n διαστάσεων μία τέτοια συνάρτηση έχει 2n τοπικά μέγιστα. Η εύρεση των ανεξάρτητων συνιστωσών γίνεται με αβεβαιότητα ως προς το πρόσημο (κατεύθυνση) και την σειρά.

Μέτρα μη Γκαουσιανότητας Kurtosis

Μέτρα μη Γκαουσιανότητας Kurtosis Super-Gaussian kurtosis > 0 Gaussian kurtosis = 0 Sub-Gaussian kurtosis < 0

Μέτρα μη Γκαουσιανότητας Kurtosis Super-Gaussian kurtosis > 0 Gaussian kurtosis = 0 Sub-Gaussian kurtosis < 0 Μειονέκτημα: Παρουσιάζει μεγάλη ευαισθησία σε outliers. Η τιμή της καθορίζεται περισσότερο από δείγματα στην ουρά της κατανομής.

Μέτρα μη Γκαουσιανότητας Negentropy Η εντροπία μίας τυχαίας μεταβλητής y με πυκνότητα f(y) ορίζεται ως:

Μέτρα μη Γκαουσιανότητας Negentropy Η Gaussian κατανομή παρουσιάζει τη μέγιστη εντροπία για δεδομένη διακύμανση. Η εντροπία μίας τυχαίας μεταβλητής y με πυκνότητα f(y) ορίζεται ως:

Μέτρα μη Γκαουσιανότητας Negentropy Η Gaussian κατανομή παρουσιάζει τη μέγιστη εντροπία για δεδομένη διακύμανση. Συνεπώς ένα κατάλληλο μέτρο για τη μη Γκαουσιανότητα θα ήταν το εξής: Η εντροπία μίας τυχαίας μεταβλητής y με πυκνότητα f(y) ορίζεται ως:

Μέτρα μη Γκαουσιανότητας Negentropy Μειονέκτημα: απαιτεί εκτίμηση (πιθανώς μη παραμετρική) της f(y).

Μέτρα μη Γκαουσιανότητας Negentropy Μειονέκτημα: απαιτεί εκτίμηση (πιθανώς μη παραμετρική) της f(y). Approximations of Negentropy 1.Με χρήση στατιστικών ροπών ανώτερης τάξης: 2. Χρησιμοποιώντας την προσέγγιση

Ισοδύναμες προσεγγίσεις Ελαχιστοποίηση της αμοιβαίας πληροφορίας (Minimization of Mutual Information) Εκτίμηση μέγιστης πιθανοφάνειας (Maximum Likelihood Estimation)

Ελαχιστοποίηση της αμοιβαίας πληροφορίας (MMI) Η αμοιβαία πληροφορία ανάμεσα σε m τυχαίες μεταβλητές ορίζεται ως:

Ελαχιστοποίηση της αμοιβαίας πληροφορίας (MMI) Η αμοιβαία πληροφορία ανάμεσα σε m τυχαίες μεταβλητές ορίζεται ως: Για έναν αντιστρεπτό γραμμικό μετασχηματισμό η έκφραση γίνεται: Αποδεικνύεται πως η αναζήτηση για μετασχηματισμό W που να ελαχιστοποιεί την αμοιβαία πληροφορία ισοδυναμεί με μεγιστοποίηση του negentropy.

Εκτίμηση μέγιστης πιθανοφάνειας Έστωο πίνακας Α -1. Τότε η log-likelihood έχει τη μορφή:

Εκτίμηση μέγιστης πιθανοφάνειας Έστωο πίνακας Α -1. Τότε η log-likelihood έχει τη μορφή: Η αναζήτηση των ανεξάρτητων συνιστωσών ισοδυναμεί με αναζήτηση κατάλληλου W ώστε να μεγιστοποιείται το L.

Εκτίμηση μέγιστης πιθανοφάνειας Έστωο πίνακας Α -1. Τότε η log-likelihood έχει τη μορφή: Η αναζήτηση των ανεξάρτητων συνιστωσών ισοδυναμεί με αναζήτηση κατάλληλου W ώστε να μεγιστοποιείται το L. Απαιτείται εκτίμηση της. Στην πράξη αρκεί η εκτίμηση για το αν οι κατανομές είναι sub ή supergaussian. Μειονέκτημα: Αν η εκτίμηση είναι λάθος, το αποτέλεσμα μπορεί να είναι εντελώς λανθασμένο.

Επεκτάσεις της ICA Noisy ICA Συμπεριλαμβάνονται μοντέλα θορύβου κατά την ανάλυση. Non-Linear ICA Τα παρατηρούμενα σήματα είναι μη γραμμικός συνδυασμός των πηγών. Binary ICA Οι πηγές και τα παρατηρούμενα σήματα είναι δυαδικά. Overcomplete ICA Οι πηγές είναι περισσότερες από τα παρατηρούμενα σήματα.

Εφαρμογές της ICA Ηλεκτροεγκεφαλογραφία (EEG) – Μαγνητοεγκεφαλογραφία (MEG)

Εφαρμογές της ICA Ηλεκτροεγκεφαλογραφία (EEG) – Μαγνητοεγκεφαλογραφία (MEG)

Εφαρμογές της ICA Τομογραφία - fMRI

Εφαρμογές της ICA Τηλεπικοινωνίες: Εξάλειψη θορύβου & αντιμετώπιση πολυόδευσης

Εφαρμογές της ICA Οικονομία: Ανάλυση ροών χρήματος

Εφαρμογές της ICA Αστρονομία: Ανάλυση φασματικών υπογραφών Αστέρων

Εφαρμογές της ICA Επεξεργασία εικόνας - Denoising

Εφαρμογές της ICA Εξαγωγή χαρακτηριστικών

Χρήσιμες Πηγές Fast ICA Cocktail Party audio examples “Independent Component Analysis: Algorithms and Applications”, Aapo Hyvärinen and Erkki Oja. “Survey on Independent Component Analysis”, Aapo Hyvärinen.