ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 8 ο Ανίχνευση Ακμών. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία)
Advertisements

Δομές Δεδομένων και Αλγόριθμοι
Υποθέτοντας ότι ο τελεστής ^ δεν είναι διαθέσιμος στην Γλώσσα Προγραμματισμού, να γραφτεί αλγόριθμος που να υπολογίζει την παράσταση xν, όπου xR, νZ.
Επίπεδα Γραφήματα (planar graphs)
Εργαστήριο Ψηφιακής Επεξεργασίας Εικόνας
Τεχνικές υλοποίησης του παγκόσμιου συστήματος αναφοράς
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 9 ο Κατάτμηση Εικόνας. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και.
ΚΕΦΑΛΑΙΟ 2 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 10 ο Περιγραφή Σχήματος. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει:  Με βάση τα εξωτερικά χαρακτηριστικά.
Μάθημα 7ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ.
Εισαγωγικές Έννοιες Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Δισδιάστατα Σήματα και Συστήματα #1
Κατάτμηση Εικόνων ΔΤΨΣ 150 – Ψηφιακή Επεξεργασία Εικόνας
Γραφήματα & Επίπεδα Γραφήματα
ΜΕΛΕΤΗ ΧΡΟΝΟΣΕΙΡΩΝ ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ
ΔΤΨΣ 150: Ψηφιακή Επεξεργασία Εικόνας © 2005 Nicolas Tsapatsoulis Κατάτμηση Εικόνων: Κατάτμηση με βάση τις περιοχές Τμήμα Διδακτικής της Τεχνολογίας και.
Προσεγγιστικοί Αλγόριθμοι
Computational Imaging Laboratory Υπολογιστική Όραση ΤΜΗΥΠ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ.
Αριθμητικές Μέθοδοι Βελτιστοποίησης Θεωρία & Λογισμικό Τμήμα Πληροφορικής - Πανεπιστήμιο Ιωαννίνων Ι. Η. Λαγαρής.
3 Σ υ σ τ ή μ α τ α α ν α φ ο ρ ά ς κ α ι χ ρ ό ν ο υ
Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων
Συμπίεση και Μετάδοση Πολυμέσων
Παρουσίαση Νο. 11 Ανάλυση Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας.
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 7 ο Συμπίεση Εικόνας. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Οι τεχνικές.
Παρουσίαση Νο. 3 Δισδιάστατα σήματα και συστήματα #2 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
Computational Imaging Laboratory Υπολογιστική Όραση ΤΜΗΥΠ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ.
Σκοπός Σκοπός της άσκησης αυτής είναι η στερεογραφική απεικόνιση του επιπέδου του ρήγματος, καθώς και του βοηθητικού επιπέδου και του επιπέδου δράσης και.
Παρουσίαση Νο. 1 Εισαγωγή Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος
Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων
Στοιχεία από τα Διανύσματα
1 Γραφική με Υπολογιστές Β. Λούμος. 2 Περιεχόμενα Εισαγωγή στη Γραφική Περιφερειακά Γραφικής και οδήγηση Αρχές σχεδίασης εικόνων Δημιουργία και σχεδίαση.
Παρουσίαση Νο. 4 Ψηφιακή Καταγραφή Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας.
Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας.
Εργαστήριο του μαθήματος “Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας”
3 Σ υ σ τ ή μ α τ α α ν α φ ο ρ ά ς κ α ι χ ρ ό ν ο υ
2.3 ΚΙΝΗΣΗ ΜΕ ΣΤΑΘΕΡΗ ΤΑΧΥΤΗΤΑ
Computational Imaging Laboratory ΤΜΗΥΠ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Υπολογιστική Όραση.
ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΤΗΣ ΚΙΝΗΣΗΣ ΚΑΤ’ ΟΙΚΟΝ ΕΡΓΑΣΙΑ. Σταθερή μηδενική ταχύτητα Περιγραφή της κίνησης: Το σώμα είναι ακίνητο, μπορεί να έχει οποιαδήποτε θέση.
Παραμετρική αναπαράσταση συνθέτων καμπυλών
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι13-1 Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ο αλγόριθμος Dijkstra για εύρεση βραχυτέρων μονοπατιών.
ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΤΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ Ακαδημαϊκό Έτος Πέμπτη, 25 Ιουνίου η Εβδομάδα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ.
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 8 ο Ανίχνευση Ακμών. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα.
Διάλεξη 14: Εισαγωγή στη ροή ρευστών
Εύρεση Ακμών σε Ψηφιακές Εικόνες αποχρώσεων του γκρι
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΡΆΡΤΗΜΑ ΛΕΥΚΑΔΑΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΉΤΡΙΑ Δρ. ΤΣΙΝΤΖΑ ΠΑΝΑΓΙΩΤΑ Οι παρουσιάσεις του μαθήματος βασίζονται στο.
ΣΤΑΤΙΚΗ Ι Ενότητα 1 η : Ο ΔΙΣΚΟΣ ΚΑΙ Η ΔΟΚΟΣ Διάλεξη: Εισαγωγή στις γραμμές επιρροής. Καθηγητής Ε. Μυστακίδης Τμήμα Πολιτικών Μηχανικών Π.Θ. ΠΑΝΕΠΙΣΤΗΜΙΟ.
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ Άπληστη Αναζήτηση και Αναζήτηση Α* ΣΠΥΡΟΣ ΛΥΚΟΘΑΝΑΣΗΣ, ΚΑΘΗΓΗΤΗΣ.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
Εργασίες – Γενικές οδηγίες
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ψηφιακή Επεξεργασία Εικόνας
Μαθηματικά προσανατολισμού Β΄ Λυκείου
Επίλυση Προβλημάτων με Αναζήτηση
Προβλήματα Ικανοποίησης Περιορισμών
Independent Component Analysis (ICA)
Δένδρα Δένδρο είναι ένα συνεκτικό άκυκλο γράφημα. Δένδρο Δένδρο Δένδρο
ΜΠΣ ΠΡΑΣΙΝΗ ΕΝΕΡΓΕΙΑ ΤΜΗΜΑ ΗΜ&ΤΥ
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
Κεφάλαιο 7: Διαδικτύωση-Internet Μάθημα 7.9: Δρομολόγηση
Τ.Ε.Ι. Κεντρικής Μακεδονίας Σ.Τ.Ε.Φ. – Τμήμα Μηχανικών Πληροφορικής
Γραφική με Υπολογιστές Γραφικά τριών διαστάσεων
Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Μη Γραμμικός Προγραμματισμός
Ευθύγραμμη ομαλή κίνηση
Μη Γραμμικός Προγραμματισμός
Μεταγράφημα παρουσίασης:

ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 8 ο Ανίχνευση Ακμών

ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή: Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με διαφορετική φωτεινότητα.»

ΤΜΗΥΠ / ΕΕΣΤ3 Εισαγωγή (2) Τεχνικές ανίχνευσης ακμών  Τοπικές: χρησιμοποιούν την πληροφορία σε μία γειτονιά της εικόνας  Καθολικές: χρησιμοποιούν όλη την πληροφορία της εικόνας

ΤΜΗΥΠ / ΕΕΣΤ4 Διαφορικοί τελεστές (1) Η κλίση (gradient) της εικόνας είναι το πλάτος αυτού του διανύσματος παρέχει πληροφορία για τις μεταβολές της φωτεινότητας το πλάτος αυτού του διανύσματος παρέχει πληροφορία για τις μεταβολές της φωτεινότητας

ΤΜΗΥΠ / ΕΕΣΤ5 Διαφορικοί τελεστές (2) Η παράγωγος 2ης τάξης έχει μηδενισμούς στις περιοχές των ακμών. Ο τελεστής Laplace ορίζεται ως ή προσεγγιστικά Ο τελεστής Laplace είναι ευαίσθητος στον θόρυβο και δεν ανιχνεύει την διεύθυνση των ακμών.

ΤΜΗΥΠ / ΕΕΣΤ6 Μάσκες ακμών (1) Η διεύθυνση μίας ακμής μπορεί να περιγραφεί από την γωνία Η διεύθυνση μίας ακμής μπορεί να περιγραφεί από την γωνία Μπορούμε να εκτιμήσουμε την κλίση, προς συγκεκριμένες διευθύνσεις, χρησιμοποιώντας τελεστές κλίσης Μπορούμε να εκτιμήσουμε την κλίση, προς συγκεκριμένες διευθύνσεις, χρησιμοποιώντας τελεστές κλίσης όπου x είναι μία γειτονιά όπου x είναι μία γειτονιά και w είναι κατάλληλες μάσκες και w είναι κατάλληλες μάσκες

ΤΜΗΥΠ / ΕΕΣΤ7 Μάσκες ακμών (2) Roberts Prewitt Sobel

ΤΜΗΥΠ / ΕΕΣΤ8 Μάσκες ακμών (3) Η εφαρμογή των μασκών γίνεται σε κάθε pixel της εικόνας. Η μάσκα η οποία δίνει την μεγαλύτερη έξοδο Η εφαρμογή των μασκών γίνεται σε κάθε pixel της εικόνας. Η μάσκα η οποία δίνει την μεγαλύτερη έξοδο καθορίζει την κατεύθυνση της ακμής στο συγκεκριμένο σημείο. Εάν καμία μάσκα δεν δίνει αρκετά μεγάλη έξοδο, τότε δεν υπάρχει ακμή στο σημείο. καθορίζει την κατεύθυνση της ακμής στο συγκεκριμένο σημείο. Εάν καμία μάσκα δεν δίνει αρκετά μεγάλη έξοδο, τότε δεν υπάρχει ακμή στο σημείο.

ΤΜΗΥΠ / ΕΕΣΤ9 Μάσκες ακμών (4) Αρχική εικόνα Μάσκα Sobel Μάσκα Prewitt

ΤΜΗΥΠ / ΕΕΣΤ10 Κατωφλίωση ακμών (1) Για να αποφασίσουμε εάν ένα pixel είναι μέρος μίας ακμής ή του φόντου, μπορούμε να κατωφλιώσουμε ως εξής Για να αποφασίσουμε εάν ένα pixel είναι μέρος μίας ακμής ή του φόντου, μπορούμε να κατωφλιώσουμε ως εξής Το κατώφλι Τ μπορεί να είναι ολικό ή τοπικό. Το Τ μπορεί να εκτιμηθεί από το ιστόγραμμα του Ε ή με κάποιον αλγόριθμο εύρεσης βέλτιστου κατωφλίου.

ΤΜΗΥΠ / ΕΕΣΤ11 Κατωφλίωση ακμών (2) Έξοδος της μάσκας Sobel για διαφορετικά κατώφλια.

ΤΜΗΥΠ / ΕΕΣΤ12 Ένωση ακμών (1) Οι προηγούμενες τεχνικές ανιχνεύουν τα pixels της εικόνας τα οποία αποτελούν μέρος μίας ακμής. Αυτό δεν σημαίνει ότι το σύνολο αυτών των pixels σχηματίζει την ακμή (διακοπές λόγω θορύβου, ανομοιόμορφης φωτεινότητας κ.α.) Οι προηγούμενες τεχνικές ανιχνεύουν τα pixels της εικόνας τα οποία αποτελούν μέρος μίας ακμής. Αυτό δεν σημαίνει ότι το σύνολο αυτών των pixels σχηματίζει την ακμή (διακοπές λόγω θορύβου, ανομοιόμορφης φωτεινότητας κ.α.) Δύο βασικά κριτήρια για την ένωση των ακμών είναι: 1. Η τιμή του διαφορικού τελεστή στα σημεία ενδιαφέροντος και η μεταξύ τους σχέση. 2. Η κατεύθυνση του διανύσματος κλίσης στα σημεία ενδιαφέροντος και η μεταξύ τους σχέση.

ΤΜΗΥΠ / ΕΕΣΤ13 Ένωση ακμών (2) Το σημείο που ανήκει στην γειτονιά είναι μέρος μιας ακμής εάν έχει παρόμοιο πλάτος Το σημείο που ανήκει στην γειτονιά είναι μέρος μιας ακμής εάν έχει παρόμοιο πλάτος παρόμοια κλίση παρόμοια κλίση και τα πλάτη είναι σχετικά μεγάλα και τα πλάτη είναι σχετικά μεγάλα

ΤΜΗΥΠ / ΕΕΣΤ14 Ένωση ακμών (3) Αλγόριθμοι παρακολούθησης ακμών Αλγόριθμοι παρακολούθησης ακμών  Απλός: Είναι εξαντλητικός αλγόριθμος εύρεσης. Παράγει σχετικά μικρά τμήματα ακμών επειδή τερματίζει όταν παρουσιάζονται έστω και μικρά κενά.  Αναζήτησης γραφήματος: Μετατρέπει την εικόνα σε προσανατολισμένο γράφημα. Τα στοιχεία ακμής στις θέσεις x i θεωρούνται κόμβοι του γραφήματος. Έτσι οι αναγνωρισμένες ακμές αντιστοιχούν στις διαδρομές του γραφήματος. Μειονέκτημά του είναι ότι κατά τη διαδικασία της αναζήτησης πρέπει να κρατούνται στοιχεία για όλες τις τρέχουσες καλύτερες διαδρομές, τα αποτελέσματά του όμως είναι καλύτερα από αυτά του απλού. Μειονέκτημά του είναι ότι κατά τη διαδικασία της αναζήτησης πρέπει να κρατούνται στοιχεία για όλες τις τρέχουσες καλύτερες διαδρομές, τα αποτελέσματά του όμως είναι καλύτερα από αυτά του απλού.

ΤΜΗΥΠ / ΕΕΣΤ15 Ένωση ακμών (4)  Δυναμικού προγραμματισμού: Διασπά το πρόβλημα σε Ν ανεξάρτητα βήματα βελτιστοποίησης. Και σ’ αυτή την περίπτωση τα αποτελέσματα είναι καλύτερα σε σχέση με αυτά του απλού.  Mετασχηματισμός Hough: Είναι μέθοθος ανίχνευσης παραμετρικών καμπυλών οι οποίες διασυνδέουν μεμονωμένα στοιχεία ακμής. Στην ειδικότερη περίπτωση βρίσκει το σύνολο των ευθύγραμμων τμημάτων που αναπαριστούν τμήματα ακμών. Είναι μέθοθος ανίχνευσης παραμετρικών καμπυλών οι οποίες διασυνδέουν μεμονωμένα στοιχεία ακμής. Στην ειδικότερη περίπτωση βρίσκει το σύνολο των ευθύγραμμων τμημάτων που αναπαριστούν τμήματα ακμών.

ΤΜΗΥΠ / ΕΕΣΤ16 Μετασχηματισμός Hough (1) Ο μετασχηματισμός Hough χρησιμοποιεί παραμετρική περιγραφή των γεωμετρικών σχημάτων. Ο μετασχηματισμός Hough χρησιμοποιεί παραμετρική περιγραφή των γεωμετρικών σχημάτων. Η παραμετρική περιγραφή της ευθείας είναι Η παραμετρική περιγραφή της ευθείας είναι

ΤΜΗΥΠ / ΕΕΣΤ17 Μετασχηματισμός Hough (2)  Σχηματίζουμε τον παραμετρικό πίνακα, με και.  Για κάθε ένα από τα σημειά ενδιαφέροντος της εικόνας (π.χ. σημεία ακμών) και για κάθε τιμή της παραμέτρου υπολογίζουμε την.  Για κάθε διάνυσμα παραμέτρων π.χ. (a,b) προστίθεται μία μονάδα στο αντίστοιχο κελί του πίνακα P.  Αφού σαρωθεί όλη η εικόνα εφαρμόζουμε κατώφλι στον πίνακα P και σχηματίζουμε τις αντίστοιχες ευθείες.  Η παραπάνω διαδικασία μπορεί να γενικευτεί για οποιαδήποτε καμπύλη. Αν η καμπύλη περιγράφεται με n παραμέτρους τότε ο πίνακας P είναι n-διάστατος.

ΤΜΗΥΠ / ΕΕΣΤ18 Μετασχηματισμός Hough (3) Το παραπάνω μοντέλο έχει πρόβλημα όταν η ευθεία είναι κατακόρυφη. Αντ’ αυτού χρησιμοποιούμε την πολική περιγραφή: Το παραπάνω μοντέλο έχει πρόβλημα όταν η ευθεία είναι κατακόρυφη. Αντ’ αυτού χρησιμοποιούμε την πολική περιγραφή: Πολική αναπαράσταση ευθείας γραμμής

ΤΜΗΥΠ / ΕΕΣΤ19 Μετασχηματισμός Hough (4) Αρχική εικόνα Έξοδος μάσκας Έξοδος Hough