ΑΓΩΓΙΜΟΜΕΤΡΙΑ ΠροσδιορισμΟς της σταθερΑς ταχΥτητας της σαπωνοποΙησης οξικοΥ αιθυλεστΕρα.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Γαλβανικά στοιχεία.
Advertisements

Ογκομέτρηση.
ΦΑΣΜΑΤΟΦΩΤΟΜΕΤΡΙΑ Προσδιορισμος της σταθερας ταχυτητας αντΙδρασης οξεΙδωσης ιωδιοΥχων ΙΟΝΤΩΝ απΟ υπεροξεΙδιο του υδρογΟνου.
Εργαστήριο Φυσικής Χημείας | Τμήμα Φαρμακευτικής Δημήτριος Τσιπλακίδης
Ιοντισμός ισχυρών οξέων – βάσεων pH και pOH
«Αναλυτική Χημεία – Ενόργανη Ανάλυση» Ισορροπίες Οξέων - Βάσεων
ΧΗΜΕΙΑ Α΄ ΛΥΚΕΙΟΥ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ.
Χημείας Θετικής Κατεύθυνσης
των διαλυμάτων των οξέων
« ΧΡΗΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΥΓΧΡΟΝΙΚΗΣ ΛΗΨΗΣ ΚΑΙ
Χημείας Θετικής Κατεύθυνσης
ΘΕΡΜΟΧΗΜΕΙΑ ΠΕΙΡΑΜΑΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Click board to change its colour.
Ηλεκτρολύτες ιοντικά υδατικά διαλύματα.
Εργαστήριο Φυσικής Χημείας | Τμήμα Φαρμακευτικής Δημήτριος Τσιπλακίδης
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΕΩΦΥΣΙΚΩΝ ΔΙΑΣΚΟΠΗΣΕΩΝ
Όξινος βασικός χαρακτήρας - pH.
Επίδραση κοινού ιόντος ( Ε.Κ.Ι ).
Γ΄Λυκείου Κατεύθυνσης
ΠΟΤΕΝΣΙΟΜΕΤΡΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ pH ΚΑΙ ΠΕΧΑΜΕΤΡΙΚΕΣ ΤΙΤΛΟΔΟΤΗΣΕΙΣ
Χημείας Θετικής Κατεύθυνσης
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ Γ΄ ΛΥΚΕΙΟΥ
Προσδιορισμος της σταθερας ταχυτητας της ιμβερτοποιησης καλαμοσακχαρου
ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ
Ορισμός Ένα ρ.δ περιέχει σε ισορροπία ασθενές οξύ και το άλας του π.χ ασθενή βάση και το άλας της π.χ 21/11/20141 Μ. Κουρούκλης Ρυθμιστικό διάλυμα είναι.
Χημείας Θετικής Κατεύθυνσης
«Η οργάνωση της γνώσης»
Χημείας Θετικής Κατεύθυνσης
Χημικούς Υπολογισμούς
Ελάχιστη αναγνωσιμότητα / ευαισθησία: 0,05 μονάδες pH ή 3 mV
ΣΤΗ ΣΥΓΚΕΝΤΡΩΣΗ ΔΙΑΛΥΜΑΤΟΣ
Επίδραση κοινού ιόντος
Σταθερά ιοντισμού Κa ασθενούς οξέος
ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ, ΟΞΕΑ, ΒΑΣΕΙΣ, pH. ΟΓΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΟΞΙΚΟΥ ΟΞΕΟΣ
Εργαστήριο Φυσικής Χημείας | Τμήμα Φαρμακευτικής Δημήτριος Τσιπλακίδης
Ο νόμος του Ωμ ΣΤΟΧΟΣ : Ο μαθητής να μπορεί να,
Ιονική ισχύς Η ιονική ισχύς, Ι, ενός διαλύματος δίνεται σαν το ημιάθροισμα του γινομένου της συγκέντρωσης καθενός συστατικού του διαλύματος πολλαπλασιασμένης.
Χημείας Θετικής Κατεύθυνσης
ΑΝΤΙΔΡΑΣΕΙΣ ΣΕ ΥΔΑΤΙΚΑ ΔΙΑΛΥΜΑΤΑ ΓΙΝΟΜΕΝΟ ΙΟΝΤΩΝ ΝΕΡΟΥ Kw
Η σχέση που συνδέει την Κa οξέος και την Κb της συζυγούς βάσης
3.2 ΧΗΜΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ
Arrhenius. Arrhenius Ιοντισμός ηλεκτρολύτη μέσα στο νερό.
Εργαστήριο Φυσικής Χημείας | Τμήμα Φαρμακευτικής Δημήτριος Τσιπλακίδης
6ο ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΖΩΓΡΑΦΟΥ Βυζιργιαννάκης Μανώλης
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ Γ΄ ΛΥΚΕΙΟΥ
IrYdium Chemistry Lab.
Καμπύλη ογκομέτρησης είναι η γραφική παράσταση του pΗ του άγνωστου διαλύματος που ογκομετρούμε σε συνάρτηση με τον όγκο του πρότυπου διαλύματος που προσθέτουμε.
ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ ΚΕΦ.2.Θ: ΟΓΚΟΜΕΤΡΗΣΗ ΕΞΟΥΔΕΤΕΡΩΣΗΣ (α) ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Τι είναι: ΟΓΚΟΜΕΤΡΗΣΗ ΕΞΟΥΔΕΤΕΡΩΣΗΣ είναι η διαδικασία προσδιορισμού του.
5. ΟΓΚΟΜΕΤΡΗΣΕΙΣ ΕΞΟΥΔΕΤΕΡΩΣΕΩΣ -πρόκειται για τη σπουδαιότερη τάξη των ογκομετρικών μεθόδων αναλύσεως με ευρύτατη χρήση στη χημεία, τη βιολογία, τη γεωλογία,
ΙΟΝΤΙΚΑ ΚΑΙ ΜΟΡΙΑΚΑ ΔΙΑΛΥΜΑΤΑ
ΕΥΡΙΔΙΚΗ ΗΛΙΑ 8ο ΕΞΑΜΗΝΟ Α.Μ : Z15880 ΑΦΠ ΚΑΙ ΓΜ ΠΡΑΚΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΕΔΑΦΟΛΟΓΙΑΣ ΚΑΙ ΓΕΩΡΓΙΚΗΣ ΧΗΜΕΙΑΣ- Γ.Π.Α 9 ΙΟΥΛΙΟΥ-31 ΑΥΓΟΥΣΤΟΥ 2012.
Ενότητα: Διάχυση Υγρών και Αερίων Διδάσκοντες: Χριστάκης Παρασκευά, Αναπληρωτής Καθηγητής Δημήτρης Σπαρτινός, Λέκτορας Δ. Σωτηροπούλου, Εργαστηριακό Διδακτικό.
Ογκομετρική ανάλυση Είναι η μεθοδολογία κατά την οποία προσδιορίζεται η συγκέντρωση διαλύματος άγνωστης ουσίας με την προσθήκη μετρήσιμου όγκου διαλύματος.
ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ ΚΕΦ.2.B: ΙΟΝΤΙΣΜΟΣ ΟΞΕΩΝ ΚΑΙ ΒΑΣΕΩΝ (α) ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΗΛΕΚΤΡΟΛΥΤΙΚΗ ΔΙΑΣΤΑΣΗ: Η απομάκρυνση των ιόντων μιας ιοντικής ένωσης από.
Ογκομέτρηση πολυπρωτικών οξέων
ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ Χημεία Γ΄ Λυκείου Ρυθμιστικά Διαλύματα – Ογκομέτρηση Στέφανος Κ. Ντούλας Χημικός MSc-Med Υπεύθυνος ΕΚΦΕ Αγίων Αναργύρων Αντώνης Χρονάκης.
ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ Χημεία Α΄ Λυκείου Χημικές Αντιδράσεις Παρασκευή διαλύματος γνωστής Συγκέντρωσης Αραίωση διαλύματος Εισηγητής Στέφανος Κ. Ντούλας Χημικός.
ΘΕΩΡΙΑ Καταστατική εξίσωση των τέλειων αερίων Καταστατική εξίσωση των τέλειων αερίων P V = n R T.
ΚΕΦ.2.Δ: Σταθερά ιοντισμού ασθενών οξέων και βάσεων (α)
∆είκτες Πρωτολυτικοί ή ηλεκτρολυτικοί δείκτες είναι ουσίες των οποίων το χρώμα αλλάζει ανάλογα με το pH του διαλύματος στο οποίο προστίθενται. Οι δείκτες.
ΚΕΦ.2.3: ΙΟΝΤΙΣΜΟΣ ΝΕΡΟΥ, pH (α)
ΠΗΝΙΟ Το πηνίο είναι ένα από τα παθητικά στοιχεία των ηλεκτρονικών κυκλωμάτων όπως είναι οι αντιστάσεις και οι πυκνωτές. Το Πηνίο αποτελείται από σπείρες.
Ka . Kb = Kw ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ
NaA  Na+ + A- HA + HOH H3O+ + A- ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ
ΠΗΝΙΟ Το πηνίο είναι ένα από τα παθητικά στοιχεία των ηλεκτρονικών κυκλωμάτων όπως είναι οι αντιστάσεις και οι πυκνωτές. Το Πηνίο αποτελείται από σπείρες.
Ο ΝΟΜΟΣ ΤΟΥ ΩΜ.
Γαλβανικά στοιχεία.
ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ (Κ)ΚΕΦ.3: 3.3 ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΤΑΧΥΤΗΤΑ ΑΝΤΙΔΡΑΣΗΣ ΕΡΩΤΗΣΕΙΣ ΕΦΑΡΜΟΓΗΣ Σε 500 mL διαλύματος HCl 1M θερμοκρασίας 25.
Αντίσταση αγωγού.
Ιοντισμός ισχυρών οξέων – βάσεων pH και pOH
Ποιές ενώσεις ονομάζονται δείκτες; Που χρησιμοποιούνται οι δείκτες;
Μεταγράφημα παρουσίασης:

ΑΓΩΓΙΜΟΜΕΤΡΙΑ ΠροσδιορισμΟς της σταθερΑς ταχΥτητας της σαπωνοποΙησης οξικοΥ αιθυλεστΕρα

Αγωγιμότητα Αντίσταση Εκφράζει την δυσκολία με τα οποία οι φορείς του ρεύματος (ηλεκτρόνια, ιόντα) μπορούν να περάσουν μέσα από αγωγούς: όπου R ηλεκτρική αντίσταση (ohm), μήκος διέλευσης ηλεκτρικού ρεύματος (m), S διατομή αγωγού (m2), ρ ειδική αντίσταση (ohm∙m). Αγωγιμότητα Εκφράζει την ευκολία με τα οποία οι φορείς του ρεύματος (ηλεκτρόνια, ιόντα) μπορούν να περάσουν μέσα από αγωγούς: όπου G αγωγιμότητα (ohm-1 ή S), κ ειδική αγωγιμότητα (ohm-1∙m-1 ή S∙m-1)

Αγωγιμότητα ηλεκτρολυτικών διαλυμάτων Μοριακή αγωγιμότητα, Λ: (C [=] mol/lt) Ισοδύναμη αγωγιμότητα, Λeq: (C [=] greq/lt) Οι μονάδες της μοριακής αγωγιμότητας όταν χρησιμοποιούνται οι πιο πάνω σχέσεις (με τις συγκεντρώσεις σε mol/lt ή greq/lt και την ειδική αγωγιμότητα σε S∙cm-1) είναι σε S∙cm2∙mol-1.

Νόμος Kohlrausch Νόμος Kohlrausch Η εξάρτηση της Λ από την συγκέντρωση είναι διαφορετική στους ισχυρούς και ασθενείς ηλεκτρολύτες. Σε αραιά διαλύματα ισχυρών ηλεκτρολυτών, η ισοδύναμη αγωγιμότητα μεταβάλλεται γραμμικά με την τετραγωνική ρίζα της συγκέντρωσης του ηλεκτρολύτη: όπου η οριακή μοριακή αγωγιμότητα σε άπειρη αραίωση και Α μία σταθερά που εξαρτάται από τον τύπο του ηλεκτρολύτη, τον διαλύτη και την θερμοκρασία. Νόμος Kohlrausch

Νόμος Kohlrausch

Αρχή Kohlrausch Η τιμή της μπορεί να εκφραστεί ως το άθροισμα των συνεισφορών των επί μέρους ιόντων (αρχή ανεξαρτησίας κίνησης ιόντων): λ+ και λ- η γραμμομοριακή αγωγιμότητα κατιόντων και ανιόντων ν+ και ν- οι αριθμοί κατιόντων και ανιόντων στη μονάδα χημικού τύπου του ηλεκτρολύτη (π.χ. ν+=ν-=1 για HCl, NaCl, CuSO4 αλλά ν+=1 και ν-=2 για MgCl2).

Αρχή Kohlrausch λ / S∙cm2∙mol-1 Η+ 349.8 OH- 197 73.7 Cl- 76.4 K+ 73.5 Τιμές γραμμομοριακών αγωγιμοτήτων ιόντων στους 25oC στο νερό. λ / S∙cm2∙mol-1 Η+ 349.8 OH- 197 73.7 Cl- 76.4 K+ 73.5 Br- 78.1 Na+ 50.11 161.6 Li+ 38.68 40.9

Μέτρηση αγωγιμότητας Για την μέτρηση της αγωγιμότητας ηλεκτρολυτικών διαλυμάτων χρησιμοποιείται μια τροποποιημένη διάταξη της γέφυρας Wheatstone ή η γέφυρα Kohlrausch. Η μία αντίσταση έχει αντικατασταθεί με μια αγωγιμο- μετρική κυψέλη που περιέχει το ηλεκτρολυτικό διάλυμα. Χρησιμοποιείται εναλλασσόμενη τάση (50-3000 Hz) ώστε να αποφεύγεται η συνεχής αγωγή ρεύματος μέσα από την κυψέλη που θα προκαλούσε ηλεκτρόλυση του διαλύματος. Για την αποφυγή αλλοίωσης των ηλεκτροδίων που χρησιμοποιούνται στην κυψέλη, τα ηλεκτρόδια είναι κατασκευασμένα από λευκόχρυσο επικαλυμμένο με μαύρο λευκόχρυσο.

Μέτρηση αγωγιμότητας Τύποι αγωγιμομετρικών κυψελών

Παρακολούθηση της κινητικής σαπωνοποίησης οξικού αιθυλεστέρα αρχικά (t=0) a b t τελικά (t=) διμοριακή αντίδραση δεύτερης τάξης: ταχύτητα αντίδρασης = Tα ευκίνητα ιόντα ΟΗ- ( ) δίνουν θέση στα λιγότερα ευκίνητα CH3COO- ( ) του άλατος που σχηματίζεται.

Παρακολούθηση της κινητικής σαπωνοποίησης οξικού αιθυλεστέρα Αγωγιμότητα διαλύματος ειδικές αγωγιμότητες των ιόντων Νa+, OH- και CH3COO- (λi=1000κi/Ci)

Παρακολούθηση της κινητικής σαπωνοποίησης οξικού αιθυλεστέρα Για t=0 (για την οποία x=0), ορίζεται η αρχική τιμή της ειδικής αγωγιμότητας του διαλύματος, κ0: Επομένως: Δεχόμενοι ότι οι τιμές των και δεν μεταβάλλονται κατά την πορεία την αντίδρασης, λόγω αραιών διαλυμάτων, μπορούμε να υπολογίζουμε το x για κάθε χρονική στιγμή.

Παρακολούθηση της κινητικής σαπωνοποίησης οξικού αιθυλεστέρα Παρασκευή διαλυμάτων Παρασκευάζεται διάλυμα 0.0125 Μ NaOH σε ογκομετρική φιάλη των 100 ml. Παρασκευάζεται διάλυμα 0.01 Μ CH3COOC2H5 σε ογκομετρική φιάλη των 100 ml. Προσδιορισμός ειδικής αγωγιμότητας σε χρόνο t=0 (κ0) Αραιώνουμε 50 ml από το πρώτο διάλυμα (NaOH) με προσθήκη 50 ml νερό. Μετράμε την αγωγιμότητα του διαλύματος αυτού, η οποία αντιστοιχεί στην τιμή της ειδικής αγωγιμότητας κατά την έναρξη της αντίδρασης σαπωνοποίησης, κ0. Έναρξη αντίδρασης Αναμειγνύουμε 50 ml από τα δύο αρχικά διαλύματα σε κωνική φιάλη (έναρξη αντίδρασης, t=0) Παρακολούθηση της αντίδρασης Σε ορισμένα χρονικά διαστήματα από την έναρξη της αντίδρασης (5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 35 min, 40 min και 45 min) λαμβάνουμε ένδειξη για την αγωγιμότητα του διαλύματος.

Παρακολούθηση της κινητικής σαπωνοποίησης οξικού αιθυλεστέρα Ζητούμενο: Προσδιορισμός της σταθεράς ταχύτητας, k. Με βάση τα πειραματικά δεδομένα κατασκευάζεται ο πίνακας: Βάσει των τιμών από τον πίνακα, κατασκευάζεται τo αντίστοιχο διάγραμμα ln[b(a-x)/a(b-x)] vs. t που είναι μια ευθεία με κλίση k∙(α-b), όπου k η σταθερά της ταχύτητας. t (min) κt (Sˑcm-1) ln[b(a-x)/a(b-x)] 5   10 15 20 25 30 35 40 45