Wibisono Sukmo Wardhono, ST, MT TIF 4102 calculus
Wibisono Sukmo Wardhono, ST, MT x 2 - 2x x 1 = 1 + j2x 2 = 1 - j2
Wibisono Sukmo Wardhono, ST, MT 2 imajiner real 1 -2 r = √5
Wibisono Sukmo Wardhono, ST, MT f(x) =tan x Tentukan diskontinyuitas-nya
Wibisono Sukmo Wardhono, ST, MT f(x)f(x) x lim x½π–x½π– f(x)f(x) x½π+x½π+ f(x)f(x) = -∞ = ∞ lim x½πx½π f(x)f(x) = undefined ½π½π
Wibisono Sukmo Wardhono, ST, MT f(x)f(x) x P Q y=f(x)y=f(x)
Wibisono Sukmo Wardhono, ST, MT f(x)f(x) x P Q y=f(x)y=f(x)
Wibisono Sukmo Wardhono, ST, MT f(x)f(x) x P Q y=f(x)y=f(x)
Wibisono Sukmo Wardhono, ST, MT f(x)f(x) x P Q y=f(x)y=f(x)
Wibisono Sukmo Wardhono, ST, MT f(x)f(x) x P Q y=f(x)y=f(x) c h c+hc+h f(c) f(c+h) f(c+h)-f(c)
Wibisono Sukmo Wardhono, ST, MT f(c+h)-f(c) m sec = h
Wibisono Sukmo Wardhono, ST, MT f(x)f(x) x P Q y=f(x)y=f(x) h
Wibisono Sukmo Wardhono, ST, MT f(x)f(x) x P Q y=f(x)y=f(x) h
Wibisono Sukmo Wardhono, ST, MT f(x)f(x) x P Q y=f(x)y=f(x) h
Wibisono Sukmo Wardhono, ST, MT f(x)f(x) x P Q y=f(x)y=f(x) h
Wibisono Sukmo Wardhono, ST, MT f(c+h)-f(c) m tan = h lim h 0h 0 m sec lim h 0h 0 =
Wibisono Sukmo Wardhono, ST, MT f(x) =x2x2 Tentukan m tan pada (2, f(2))
Wibisono Sukmo Wardhono, ST, MT f(x) =x2x2 Tentukan m tan pada (c, f(c))
Wibisono Sukmo Wardhono, ST, MT f(x) =x 3 +2x 2 +3 Tentukan m tan pada (c, f(c))
Wibisono Sukmo Wardhono, ST, MT “ ” Dear CRUSH.. Randomly smiling while thinking about you, is just a side effect caused by