ΟΜΙΛΟΣ “ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑΣ”

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ποιους νόμους του Νεύτωνα χρησιμοποιεί;
Advertisements

Μετάδοση Θερμότητας με μεταφορά
Εισαγωγή στη Μηχανική των Ρευστών
Κεφάλαιο 9: Περιστροφή Στερεού Σώματος
Εισαγωγή στη Μηχανική των Ρευστών
Εισαγωγή στη Μηχανική των Ρευστών
Διάγραμμα τάσης - παραμόρφωσης
ΠΕΔΙΟ ΡΟΗΣ ΡΕΥΣΤΟΥ Ροή Λάβας Ροή Νερού
ΑΝΑΛΥΣΗ ΣΕ ΜIΚΡΟΣΚΟΠΙΚΟ ΕΠΙΠΕΔΟ Ή ΔΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ
Μηχανική Ενέργεια Τι είναι η Ενέργεια Κινητική Ενέργεια
ΚΕΦΑΛΑΙΟ 2 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
Αρχή διατήρησης της μάζας – Εξίσωση συνέχειας
Δύναμη: αλληλεπίδραση μεταξύ δύο σωμάτων ή μεταξύ ενός σώματος και του περιβάλλοντός του (πεδίο δυνάμεων). Δυνάμεις επαφής Τριβή Τάσεις Βάρος Μέτρο και.
Ισορροπία υλικού σημείου
ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΑΕΡΙΩΝ
Ζαχαριάδου Αικατερίνη
Test PEYSTA.
ΦΥΣΙΚΗ Ζαχαριάδου Κατερίνα Γραφείο Β250
ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ:
Θεμελιώδεις Αρχές της Μηχανικής
Γραμμική παρεμβολή Γενικώς η λογική της στηρίζεται στην απλή μέθοδο των τριών ως εξής: Η αύξηση του x1 είναι κατά: Για αλλαγή του x ίση με: x2-x1 είχαμε.
Κεφάλαιο 2 Κίνηση σε μία διάσταση
Φυσική Β’ Λυκείου Κατεύθυνσης
Στροφορμή.
ΜΙΧΑΗΛ Ν. ΠΙΖΑΝΙΑΣ. ΜΙΧΑΗΛ Ν. ΠΙΖΑΝΙΑΣ ΜΙΧΑΗΛ Ν. ΠΙΖΑΝΙΑΣ ΕΠΙΣΚΕΠΤΗΣ ΚΑΘΗΓΗΤΗΣ.
ΒΟΗΘΟΣ ΦΑΡΜΑΚΕΙΟΥ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΙΕΚ Μυτιλήνης
Εξίσωση ενέργειας - Bernoulli
Ιξώδες Η μακροσκοπική άποψη
2.6. ΥΔΡΟΣΤΑΤΙΚΕΣ ΠΙΕΣΕΙΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ
ΥΔΡΟΣΤΑΤΙΚΗ Υδροστατική είναι το κεφάλαιο της Υδραυλικής που μελετά τους νόμους που διέπουν τα ρευστά όταν βρίσκονται σε ηρεμία.
Ενότητα Α3: Ομοιότητα και διαστατική ανάλυση
Πίεση σε υγρό Ένα υγρό εξασκεί πίεση προς όλες τις διευθύνσεις
ΙΔΙΟΤΗΤΕΣ ΔΙΑΛΥΜΑΤΩΝ-ΠΡΟΣΘΕΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ
Πόση είναι η μετατόπιση του καθενός;
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των.
Πτυχιακή εργασία Σπουδαστής: ΧΑΤΖΗΠΑΝΤΕΛΗ ΕΛΕΝΗ (1771) Επιβλέπων: Δρ. ΑΘΑΝΑΣΙΟΥ ΜΙΧΑΗΛ.
ΜΕΤΡΗΣΗ ΡΟΗΣ ΑΤΕΙ ΚΑΛΑΜΑΤΑΣ ΤΜΗΜΑ ΤΕ.ΤΡΟ.. Χαρακτηριστικά ρευστών Κάθε ρευστό έχει ένα μοναδικό σύνολο χαρακτηριστικών, μεταξύ των οποίων είναι: Πυκνότητα.
Ενότητα: Διάχυση Υγρών και Αερίων Διδάσκοντες: Χριστάκης Παρασκευά, Αναπληρωτής Καθηγητής Δημήτρης Σπαρτινός, Λέκτορας Δ. Σωτηροπούλου, Εργαστηριακό Διδακτικό.
Ενότητα B6: Σπηλαίωση ελίκων Α. Θεοδουλίδης. Σπηλαίωση είναι το φαινόμενο κατά το οποίο η ροή γύρω από μια φέρουσα επιφάνεια αλλάζει ριζικά λόγω αλλαγής.
Μηχανική των Ρευστών Ενότητα 1: Εισαγωγικές Έννοιες-Ορισμοί Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Προαπαιτούμενες γνώσεις από τη Φυσική της Α και Β Λυκείου Φυσική Γ’ Λυκείου Ομάδας Προσανατολισμού Θετικών Σπουδών 1 ο ΓΕΛ Ρεθύμνου © Ν. Καλογεράκης.
Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Γραμμική παρεμβολή Γενικώς η λογική της στηρίζεται στην απλή μέθοδο των τριών ως εξής: Η αύξηση του x1 είναι κατά: Για αλλαγή του x ίση με: x2-x1 είχαμε.
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES
Βάρος είναι η κατακόρυφη δύναμη με φορά προς τα κάτω που ασκεί η Γη σε κάθε σώμα. Γιατί όμως στις παρακάτω εικόνες, τα σώματα που εικονίζονται, δεν κινούνται.
Μηχανική Ρευστών Ι Ενότητα 7: Θεμελιώδεις αρχές διατήρησης – Μάζα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΙΞΩΔΟΜΕΤΡΙΑ VISCOMETRY.
Εργο W Σταθερή δύναμη F που μετακινεί σώμα για διάστημα s (χωρίς περιστροφή). Όπου φ η γωνία που σχηματίζει η δύναμη με την μετατόπιση. Μονάδα μέτρησης.
Κινητική θεωρία των αερίων
Εξίσωση ενέργειας - Bernoulli
ΜΗΧΑΝΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ (συνέχεια).
2. Βασικές έννοιες από το μάθημα της Ρευστομηχανικής στο μάθημα της Υδραυλικής και εισαγωγικές έννοιες Δρ Μ.Σπηλιώτη Λέκτορα ΔΠΘ.
Επανάληψη στις δυνάμεις
ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
Η έννοια της ΔΥΝΑΜΗΣ Δύναμη είναι η αιτία που μπορεί:
ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ - ΑΓΩΓΙΜΟΤΗΤΑ
Δομή του μαθήματος Το σύστημα και το περιβάλλον του συστήματος
ΤΑΛΑΝΤΩΣΕΙΣ.
Φαινόμενα που επηρεάζουν:
ΤΑΛΑΝΤΩΣΕΙΣ.
Βάρος είναι η κατακόρυφη δύναμη με φορά προς τα κάτω που ασκεί η Γη σε κάθε σώμα. Γιατί όμως στις παρακάτω εικόνες, τα σώματα που εικονίζονται, δεν κινούνται.
ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ - ΑΓΩΓΙΜΟΤΗΤΑ
Πίεση Ρ Από ποιους παράγοντες εξαρτάται η ατμοσφαιρική πίεση,
Κινητική θεωρία των αερίων
Πυκνότητα Προσοχή στις μονάδες έκφρασης της πυκνότητας
3ο Κεφάλαιο - Δυνάμεις Δύναμη είναι η αιτία που μπορεί να προκαλέσει μεταβολή στην κινητική κατάσταση ενός σώματος ή την παραμόρφωση του. Είναι διανυσματικό.
► ► ► Φυσικές και Χημικές Διεργασίες της Χημικής Τεχνολογίας Πρώτες
Ρυθμός ροής ή Παροχή  V (m3/s) ή M ή (kg/s)
Αδράνεια : μια ιδιότητα της ύλης
Μεταγράφημα παρουσίασης:

ΟΜΙΛΟΣ “ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑΣ” 2013-14 TΟ ΜΑΘΗΜΑΤΙΚΟ ΓΟΝΙΔΙΟ ΤΩΝ EULER ΚΑΙ BERNOULLI Θάνος Μπρόφας Γ4' Αρχή του Bernoulli, Εξίσωση Συνέχειας, Ιξώδες 2ο Π.Π.ΓΕΛ Αθηνών Οι υπεύθυνοι του Ομίλου Επιβλέπων Καθηγητής Ηλίας Ανδριανός Αλέξανδρος Κατέρης Αλέξανδρος Κατέρης Μιχάλης Πατσαλιάς

, για στοιχειώδεις επιφάνειες Βασικά μεγέθη Πυκνότητα Σχετικό ειδικό βάρος είναι ο λόγος: πυκνότητα ουσίας/πυκνότητα νερού στους 4ο C Πίεση , για στοιχειώδεις επιφάνειες

Μεταβολή της πίεσης Όλα τα σημεία που βρίσκονται στο ίδιο βάθος υφίστανται την ίδια πίεση. Βάρος: Δύναμη στην κάτω βάση: Δύναμη στην πάνω βάση: Ισορροπεί: Τελικά:

Με πιο απλά λόγια Προσοχή:

Απόλυτη Πίεση Έτσι επαληθέυεται και η παραδοχή πως η πίεση είναι σταθερή σε όλα τα σημεία τα οποία βρίσκονται στο ίδιο βάθος.

Blaise Pascal (1623-1662)

Νόμος Pascal Κάθε μεταβολή στην πίεση ενός περιορισμένου ρευστού μεταδίδεται χωρίς να μειωθεί σε κάθε σημείο του ρευστού καθώς και στα τοιχώματα του δοχείου που περιέχει το ρευστό. Εφαρμογές: υδραυλικό πιεστήριο Ισχύει: Τελικά:

Μέτρηση της πίεσης Βαρόμετρο Evangelista Torricelli (1608-1647)

U-Tube

Αρχιμήδης (περ. 287 π.Χ- περ. 212 π.Χ.)

Αρχή Αρχιμήδη Κάθε σώμα που είναι πλήρως ή μερικώς βυθισμένο σε ένα ρευστό υφίσταται δύναμη άνωσης ίση προς το βάρος του ρευστού το οποίο εκτοπίζει. (=βάρος νερού που εκτοπίστικε)

Περίπτωση 1: Εντελώς βυθισμένο αντικείμενο Η δύναμη άνωσης που δρα προς τα πάνω είναι: To βάρος του είναι: Έτσι η συνισταμένη που δρα πάνω του είναι: Τελικά αν:

Περίπτωση 2:αντικείμενο που επιπλέει Ισορροπία:

Ρευστά σε κίνηση Στρωτή ροή Οι τροχιές των μορίων δεν τέμνονται ή αλλιώς η ταχύτητα του ρευστού σε κάθε σημείο του χώρου είναι σταθερή (μόνιμη ροή). Αν η µόνιµη ροή γίνεται κατά παράλληλα στρώµατα, καθένα από τα οποία έχει καθορισµένη ταχύτητα, η ροή ονοµάζεται στρωτή. Όταν η ταχύτητα ενός κινουµένου ρευστού υπερβεί µια κρίσιµη τιµή, η ροή δεν παραµένειστρωτή. Η εικόνα της ροής γίνεται εξαιρετικά ακανόνιστη και πολύπλοκή και µεταβάλλεται διαρκώς µε την πάροδο του χρόνου. ∆εν υπάρχει σταθερή εικόνα που να αντιστοιχεί σε κάποια µόνιµη κατάσταση. Αυτή η ακανόνιστη, χαοτική ροή ονοµάζεται τυρβώδης ή στροβιλώδης ροή.

Ιδανικό ρευστό Ρευστό χωρίς ιξώδες (εσωτερική τριβή) Στρωτή ροή Ασυμπίεστο (ρ σταθ.) Αστρόβιλη ροή Σε ροή που ακολουθεί τα προηγούµενα µπορούµε να µελετήσουµε την κίνηση αποµονώνοντας την σε νοητό σωλήνα –φλέβα, φτιαγµένο από γραµµές ροής(στρωτή ροή, όχι στρόβιλοι-ρευµατικές γραµµές). Οι ρευματικές γραμμές δεν τέμνονται και η ταχύτητα είναι εφαπτόμενη.

Παροχή φλέβας-Εξίσωση συνέχειας ή αλλιώς Η παροχή είναι σταθερή κατά µήκος οποιουδήποτε σωλήνα ροής . Όταν η εγκάρσια διατοµή ενός σωλήνα ροής ελαττώνεται, η ταχύτητα αυξάνει. Είναι µια έκφραση της αρχής διατήρησης της µάζας. (όπου )

Daniel Bernoulli (1700-1782)

Εξίσωση Bernoulli (αριστερό τμήμα) (δεξί τμήμα) το έργο είναι αρνητικό διότι η δύναμη είναι αντίροπη της ταχύτητας ΔV ίδιο λόγω συνεχείας Μέρος αυτού του έργου μεταβάλλει την κινητική και μέρος του την δυναμική ενέργεια (βαρυτική). (όπου )

Απόδειξη Δm ποσότητα μάζας που περνά σε Δt: και: Εφαρμόζοντας: Έχουμε: Και μάλιστα αν το ρευστό είναι ακίνητο (Που ισχύει)

Σημαντικό πόρισμα Για το ίδιο ύψος: Εάν η ταχύτητα ενός σωµατιδίου ρευστού αυξάνει καθώς ταξιδεύει σε µια ρευµατική γραµµή, η πίεση του ρευστού ελαττώνεται και αντίστροφα. ΑΛΛΙΩΣ: Εκεί που οι ρευµατικές γραµµές είναι σχετικά πυκνές (εποµένως η ταχύτητα είναι σχετικά µεγάλη) η πίεση είναι σχετικά µικρή και αντίστροφα.

Παραδείγμτα Φάλτσο στην μπάλα Άρα η μπάλα θα κινηθεί προς το πάνω.

Πτερύγιο αεροπλάνου Μεγαλύτερες ταχύτητες πάνω (μικρότερη πίεση) μικρότερες ταχύτητες κάτω (μεγαλύτερη πίεση) άρα Άνωση. Βέβαια μονο με την εξίσωση Bernoulli δεν εξηγείται η παραδοχή πως έχουμε τον ίδιο χρόνο μετατόπισης. Πλήρης εξήγηση μεσω διατήρησης της μάζας και μεταβολής της ορμής. Τελικά θα έχουμε (λόγω αντιστάσεων του αέρα):

Νόμος Torricelli Από την Ε. Bernoulli: ( ) σε μεγάλα δοχεία: ( ) σε μεγάλα δοχεία: Σαν να μιλάει κανείς για σταγόνες που κάνουν ελεύθερη πτώση.

Σωλήνας Venturi Για το ίδιο ύψος από Ε.Bernoulli και Ε.Συνεχείας: και ισχύει: Άρα τελικά:

Πραγματικά ρευστά Ιξώδες (εσωτερική τριβή) Δυνάμεις τριβής αντιτίθενται στην κίνηση ενός τμήματος σε σχέση με ένα άλλο. Παρατήρηση: Ένα ρευστό με εσωτερική τριβή έχει την τάση να προσκολλάται στην επιφάνεια του στερεού με την οποία βρίσκεται σε επαφή.

Συντελεστής ιξώδους Διατμητική τάση: Διατμητική παραμόρφωση: (1) (1)/Δt : Ορίζουμε ως συντελεστή ιξώδους : (νευτώνια ρευστά)

Τυρβώδης ροή Στρωματική ροή και μεγάλες ταχύτητες Από πειράματα έχει διαπιστωθεί πως η αρχή της τυρβώδους ροής προσδιορίζεται απο τον αριθμό του Reynolds: Όπου d χαρακτηριστικό μήκος που εχει σχέση με την ροή (π.χ διάμετρος) Από διάφορα πειράματα ξέρουμε πως: Αν: στρωματική ροή τυρβώδης ροή

Επιφανειακή τάση Tα μόρια που βρίσκονται στο εσωτερικό του υγρού και σε αρκετή απόσταση από την επιφάνεια υφίστανται την επενέργεια δυνάμεων απ' όλες τις πλευρές(δυνάμεις Van der Waals ή ηλεκτροστατικές αλληλεπιδράσεις κλπ.) , η συνισταμένη των οποίων έχει στιγμιαία τιμή διάφορη του μηδενός. Αλλά η μέση τιμή της για πεπερασμένο χρονικό διάστημα είναι μηδενική. Αντίθετα στα μόρια που βρίσκονται στην επιφάνεια του υγρού, οι διαμοριακές δυνάμεις ασκούνται μόνο από τη μία πλευρά, με αποτέλεσμα να υπάρχει μη μηδενική συνισταμένη, η οποία τείνει να τα μετακινήσει προς το εσωτερικό του υγρού. Για να μετακινηθεί ένα μόριο από το εσωτερικό του υγρού στην επιφάνειά του, πρέπει να υπερνικηθούν δυνάμεις και επομένως να καταναλωθεί ενέργεια. Eπομένως υπάρχει αποταμιευμένη επιφανειακή ενέργεια. Kαι επειδή κάθε σύστημα τείνει να μειώσει την ενέργειά του, το υγρό τείνει να μειώσει την επιφάνειά του. Έτσι εμφανίζονται, μακροσκοπικά, δυνάμεις, οι οποίες τείνουν να προκαλέσουν συστολή της επιφάνειας, που τελικά παίρνει τη μορφή μεμβράνης. Tο φαινόμενο αυτό ονομάζεται επιφανειακή τάση. (Χρησιμοποιούμε τη λέξη μεμβράνη για να σχηματίσουμε μια εικόνα του φαινομένου, δεν θα πρέπει, ωστόσο, να την εκλάβουμε κυριολεκτικά.)

Αλλιώς : Τα μόρια προσπαθούν ν βρεθούν σε μία κατάσταση ηρεμίας κάθε στιγμή.Έτσι όταν αυτή η ισορροπία διαταραχθεί (π.χ. Όταν ένα έντομο πατάει στην επιφάνεια του νερού - δύναμη βάρους του προς τα κάτω-)τα μόρια τείνουν να την επαναφέρουν, δίνοντας την εντύπωση πως σχηματίζεται μεμβράνει στην επιφάνεια.

Δυνάμεις συνοχής -συνάφειας και τριχοειδή φαινόμενα Δυνάμεις συνοχής:ενδομοριακές δυνάμεις (όμοια μόρια) Δυνάμεις συνάφειας: δυνάμεις μεταξύ ανόμοιων μορίων π.χ. Οι δυνάμεις συνάφειας νερού-τοιχώματος είναι μεγαλύτερες από αυτές της συνοχής οπότε δημιουργείται μηνίσκος.Μάλιστα σε τριχοειδή αγγεία (μικροσκοπικούς σωλήνες) έχουμε τριχοειδή φαινόμενα δηλαδή την άνοδο του υγρού.Οι δυνάμεις συνάφειας πάλι υδραργύρου-τοιχώματος είναι μικρότερες από της συνοχής οποτε σχηματίζεται καμπύλη.

''Πρέπει να σταματήσω κάπου εδώ, για να αφησω και κατι να το φανταστείτε''. Richard Feynman (1918-1988)

Βιβλιογραφία Hugh D. Young ,Πανεπιστημιακή Φυσική Τόμος 1, Κεφάλαιο 14 ''Μηχανική των ρευστών'' R.Serway, Physics ,Τόμος 1,Κεφάλιαιο15 '' Μηχανική των ρευστών'' Halliday.Resnick Φυσική Μέρος Α ,Κεφάλαιο 17-18