ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Γραφήματα & Επίπεδα Γραφήματα
Advertisements

Ερωτηματολόγιο Συλλογής Απαιτήσεων Εφαρμογών Υψηλών Επιδόσεων
Γλώσσα Προγραμματισμού LOGO MicroWorlds Pro
Εφαρμογές Υπολογιστών Ά Λυκείου Κεφ. 4 Λογισμικό Συστήματος
Βασικές Συναρτήσεις Πινάκων
Νέο Σχολείο – Νέο Λύκειο
Ανάλυση Πολλαπλής Παλινδρόμησης
1 Α. Βαφειάδης Αναβάθμισης Προγράμματος Σπουδών Τμήματος Πληροφορικής Τ.Ε.Ι Θεσσαλονίκης Μάθημα Προηγμένες Αρχιτεκτονικές Υπολογιστών Κεφαλαίο Πρώτο Αρχιτεκτονική.
Πιθανοκρατικοί Αλγόριθμοι
Ασκήσεις Συνδυαστικής
ΙΔΕΟΛΟΓΙΚΕΣ ΑΞΙΕΣ, ΠΟΛΙΤΙΚΕΣ ΣΤΑΣΕΙΣ ΚΑΙ ΗΓΕΜΟΝΙΑ ΣΤΗΝ ΕΚΛΟΓΙΚΗ ΒΑΣΗ ΤΩΝ ΚΟΜΜΑΤΩΝ. Η συγκυρία των Βουλευτικών Εκλογών 2007.
Λογισμικο συστηματοσ Κεφάλαιο 4ο
Πολυπλοκότητα Παράμετροι της αποδοτικότητας ενός αλγόριθμου:
Μεταγωγή (Switching) Λειτουργία: συνδέει εισόδους σε εξόδους, έτσι ώστε τα bits ή τα πακέτα που φτάνουν σε ένα σύνδεσμο, να φεύγουν από έναν άλλο επιθυμητό.
Διάλεξη 16: Πρόβλημα Συμφωνίας ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι.
Γιάννης Σταματίου Μη αποδοτική αναδρομή και η δυναμική προσέγγιση Webcast 8.
24/11/2003Message Passing Interface (MPI)1 Αθήνα, Νοέμβριος 2003 Συστήματα Παράλληλης Επεξεργασίας Εργαστήριο Υπολογιστικών Συστημάτων.
1 Συλλογικοί Κατάλογοι & Διαδίκτυο Μιχάλης Σφακάκης.
Page  1 Ο.Παλιάτσου Γαλλική Επανάσταση 1 ο Γυμνάσιο Φιλιππιάδας.
ΝΕΟ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α’, Β’, & Γ’ ΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ Ανδρέας Σ. Ανδρέου (Αναπλ. Καθηγητής ΤΕΠΑΚ - Συντονιστής) Μάριος Μιλτιάδου, Μιχάλης Τορτούρης.
ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ Β. Κώστογλου – Τμήμα Πληροφορικής ΑΤΕΙ-Θ
1 4 Square Questions B A D C Κοιτάξτε προσεκτικά το διάγραμμα. Θα σας κάνω 4 ερωτήσεις γι’ αυτό το τετράγωνο. ΕΤΟΙΜΟΙ;
Αλγόριθμοι και Πολυπλοκότητα
Εισαγωγικές Έννοιες Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Αναγνώριση Προτύπων.
Γραφήματα & Επίπεδα Γραφήματα
Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους Ν-k πρόβλημα μεγέθους k.
Απαντήσεις Θεωρίας - Ασκήσεων
Σχέση Απόδοσης- Κινδύνου στα Πλαίσια της Θεωρίας Χαρτοφυλακίου
Κοντινότεροι Κοινοί Πρόγονοι α βγ θ δεζ η π ν ι κλμ ρσ τ κκπ(λ,ι)=α, κκπ(τ,σ)=ν, κκπ(λ,π)=η κκπ(π,σ)=γ, κκπ(ξ,ο)=κ ξο κκπ(ι,ξ)=β, κκπ(τ,θ)=θ, κκπ(ο,μ)=α.
Μάθημα 14ο «Ισοδύναμα κλάσματα» Δάσκαλος: Γιάννης Στυλιανού
1 Θεματική Ενότητα Γραφήματα & Επίπεδα Γραφήματα.
Προσεγγιστικοί Αλγόριθμοι
07. ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ
Μέγιστη ροή TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA A A Συνάρτηση χωρητικότητας Κατευθυνόμενο γράφημα.
Εισαγωγή στην Οικονομική ΤΟΜΟΣ Α΄
ΕΙΣΑΓΩΓΗ: ΒΑΣΙΚΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΓΝΩΣΕΙΣ
Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ» Β΄ τάξης Γενικού Λυκείου
Τυχαιοκρατικοί Αλγόριθμοι TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA Πιθανότητες και Αλγόριθμοι Ανάλυση μέσης.
1 Content Addressable Network Λίλλης Κώστας Καλλιμάνης Νικόλαος Αγάθος Σπυρίδων – Δημήτριος Σταθοπούλου Ευγενία Γεωργούλας Κώστας.
A Balanced Tree Structure for Peer-to-Peer Networks
Ανάλυση Πολλαπλής Παλινδρόμησης
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Κυριακή, 11 Ιανουαρίου 2015Κυριακή, 11 Ιανουαρίου 2015Κυριακή, 11 Ιανουαρίου 2015Κυριακή, 11 Ιανουαρίου.
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι12-1 Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ο αλγόριθμος του Prim και ο αλγόριθμος του Kruskal.
1 6.Εισαγωγή γραφικού 6.1 Εισαγωγή γραφικού Στο μενού «Εισαγωγή» τοποθετούμε τον κέρσορα στην επιλογή «Εικόνα»
ΧΡΗΜΑΤΟΔΟΤΗΣΗ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΣΤΗ ΓΕΩΡΓΙΑ
ΤΑ ΠΡΩΤΑ ΒΗΜΑΤΑ ΣΤΗΝ ΑΓΟΡΑ. ΣΤΟΧΟΣ ΤΗΣ ΑΓΟΡΑΣ ΕΙΝΑΙ ΝΑ ΒΡΕΘΕΙ ΤΟ ΣΩΣΤΟ ΣΥΜΒΟΛΑΙΟ! ΓΙΑ ΝΑ ΚΑΝΟΥΜΕ ΈΝΑ ΧΡΩΜΑ ΑΤΟΥ, ΚΑΛΟ ΘΑ ΕΙΝΑΙ ΝΑ ΕΧΟΥΜΕ ΦΙΤ ΜΕ ΤΟΝ ΣΥΜΠΑΙΚΤΗ.
(ΤΑΠΕΡ, ΑΛΟΥΜΙΝΟΧΑΡΤΟ,ΧΑΡΤΙ) ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: ΛΕΚΚΑΣ ΛΕΩΝΙΔΑΣ
Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης
Τα προϊόντα της EmGoldEx Τα προϊόντα της EmGoldEx Ράβδοι χρυσού 24k καθαρότητας 999,9 απο 1 έως 100 γραμμάρια Όλες οι ράβδοι χρυσού είναι πιστοποιημένες.
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Συγγραφείς Α.Βακάλη Η. Γιαννόπουλος Ν. Ιωαννίδης Χ.Κοίλιας Κ. Μάλαμας Ι. Μανωλόπουλος Π. Πολίτης Γ΄ τάξη.
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών – Τμήμα Πληροφορικής και Τηλεπικοινωνιών 1 Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Προπτυχιακό.
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Τμ.
Ελάχιστο Συνδετικό Δέντρο
Computers: Information Technology in Perspective By Long and Long Copyright 2002 Prentice Hall, Inc. Προγραμματισμός Η / Υ 6 η Διάλεξη.
Δομές Δεδομένων - Ισοζυγισμένα Δυαδικά Δένδρα (balanced binary trees)
Δομές Αναζήτησης TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες:
1 Μελέτη κανόνων συμμετοχής σε ομότιμα δίκτυα επικοινωνίας μέσω προσομοίωσης Φοιτητής : Χρήστος Ι. Καρατζάς Επιβλέποντες Καθηγητές : Γ. Πολύζος – Κ. Κουρκουμπέτης.
1 Βάσεις Δεδομένων ΙI Επιμέλεια: ΘΟΔΩΡΗΣ ΜΑΝΑΒΗΣ SQL (3 από 3) T Manavis.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 4: Συνδεσμικότητα Data Engineering Lab 1.
ΒΑΣΙΚΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΕΝΝΟΙΕΣ
Αγγελική Γεωργιάδου- Αναστασία Πεκτέσογλου Δράμα 2006
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι13-1 Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ο αλγόριθμος Dijkstra για εύρεση βραχυτέρων μονοπατιών.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
Διδάσκων: Δρ. Τσίντζα Παναγιώτα
Το μοντέλο πελάτη - εξυπηρετητή
ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ
Πρωτότυπα προβλήματα Κατσανού Μαρία.
Μεταγράφημα παρουσίασης:

Διάλεξη 19: Κατανομή Πόρων – Κόψιμο Τούρτας Φθινόπωρο 2011 Διάλεξη 19: Κατανομή Πόρων – Κόψιμο Τούρτας ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Ορισμός Προβλήματος Συνθήκη Δικαιοσύνης Αλγόριθμος 2 επεξεργαστών (Cut & Choose) Αλγόριθμος 3 επεξεργαστών (Trimming) Αλγόριθμος 4 επεξεργαστών (Divide & Conquer) ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Το Πρόβλημα (In Real Life) Η Alice και ο Bob θέλουν να μοιραστούν μια τούρτα Η Alice προτιμά το κομμάτι με τη το λιλά λουλούδι (Εκτίμηση Κομματιού=70%) Ο Bob προτιμά το κίτρινο λουλούδι (Εκτίμηση Λουλουδιού=50%) Κάθε άτομο αποτιμά την τούρτα με τις δικές του προτιμήσεις! 30% 50% 50% 70% Computer Science & Engineering Department

Το Πρόβλημα στην Πληροφορική Η τούρτα αντιπροσωπεύει έναν πόρο που διαμοιράζεται μεταξύ χρηστών (ή επεξεργαστών) Χρονοπρογραμματισμός διεργασιών Διαμοιρασμός του χρόνου της CPU Διαμοιρασμός του εύρους ζώνης της σύνδεσης με το δίκτυο Η Alice και ο Bob αντιπροσωπεύουν τους χρήστες Κάθε χρήστης μπορεί να εκτιμά ένα συγκεκριμένο κομμάτι από την τούρτα (του πόρου) με διαφορετικό τρόπο. Δεν είναι γνωστό πώς ο χρήστης εκτιμά διαφορετικά μέρη: Ο χρήστης μπορεί να αιτηθεί να «κόψει» κομμάτια της τούρτας σε συγκεκριμένες αναλογίες. Σκοπός: Να χωριστεί ο πόρος «δίκαια» μεταξύ των χρηστών. Computer Science & Engineering Department

Computer Science & Engineering Department Δικαιοσύνη Στόχος: Κάθε χρήστης πρέπει να αισθάνεται ικανοποιημένος με το κομμάτι της τούρτας που του αναλογεί Ικανοποίηση Χρήστη: Αν υπάρχουν Ν χρήστες τότε ένας χρήστης είναι ικανοποιημένος με μια κοπή τούρτας εάν έχει την "αίσθηση" ότι του αναλογεί τουλάχιστον το 1/Ν της τούρτας. Δίκαιη Διαίρεση Τούρτας: Η διαίρεση της τούρτας με την οποία όλοι οι χρήστες να είναι ικανοποιημένοι. Computer Science & Engineering Department

Άλλες μορφές Ικανοποίησης Χρηστών Απλό Μοντέλο: Κάθε χρήστης πιστεύει ότι λαμβάνει ένα κομμάτι της τούρτας με θετική τιμή. Ελευθερία-Ζήλιας: κάθε χρήστης πιστεύει ότι έχει τουλάχιστον τόσο μεγάλο κομμάτι όσο οι άλλοι χρήστες Δυνατή Ελευθερία-Ζήλιας: κάθε χρήστης πιστεύει ότι έχει μεγαλύτερο κομμάτι από τους άλλους χρήστες. Super Ελευθερία-Ζήλιας: κάθε χρήστης πιστεύει ότι κάθε χρήστης έχει το πολύ ένα ίσο κομμάτι. Computer Science & Engineering Department

Επίλυση Κοπής-Τούρτας Θεωρούμε ότι η τούρτα είναι ένα διάστημα I = [0,1]. Κομμάτι της τούρτας: ένα υποδιάστημα στο [0,1], και Τμήμα της τούρτας: είναι μια συλλογή από κομμάτια Κάθε χρήστης χρησιμοποιεί μια συνάρτηση αποτίμησης για να εκτιμήσει ένα κομμάτι Δεν γνωρίζει τη συνάρτηση αποτίμησης των άλλων χρηστών. Υπάρχει ένας συντονιστής S (ο πρόεδρος) ο οποίος ελέγχει την κοπή της τούρτας και αναθέτει κομμάτια στους χρήστες Δεν γνωρίζει τη συνάρτηση αποτίμησης των χρηστών. Πολυπλοκότητα: Ορίζεται από τον αριθμό των κοπών που χρειαζόμαστε για να επιτευχθεί δίκαιη κατανομή της τούρτας. ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Κάτω Φράγματα στις «Κοπές» Απλό Μοντέλο: Χρειαζόμαστε Ω(NlogN) κοπές (η πιο αδύνατη συνθήκη) Μοντέλο Ελεύθερο-Ζήλιας: Επίσης Ω(NlogN) κοπές Δυνατή και Super Ελευθερία-Ζήλιας: Χρειάζονται Ω(N2) κοπές ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Αλγόριθμος 2 επεξεργαστών (Κόψε & Διάλεξε) Έστω ότι έχουμε τον συντονιστή S και δύο χρήστες U1, U2 Βήμα 1: Ο S ζητά από τον U1 να κόψει την τούρτα σε δύο ίσα μέρη Βήμα 2: Ο S ζητά από τον U2 να επιλέξει το κομμάτι με την μεγαλύτερη αξία για εκείνον Βήμα 3: Ο S ζητά από τον U1 να πάρει το κομμάτι που έμεινε ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι Παράδειγμα Εκτέλεσης Έστω ότι έχουμε δύο χρήστες Α και Β S ζητά από τον A να κόψει την τούρτα σε 2 ίσα μέρη S ζητά από τον B να διαλέξει το κομμάτι με την μεγαλύτερη αξία. Ο S ζητά από τον U1 να πάρει το κομμάτι που έμεινε User A User B 50% 50% 30% 70% ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι Απόδειξη Δικαιοσύνης Ο Α κόβει την τούρτα σε 2 ίσα κομμάτια (σύμφωνα με την συνάρτηση αποτίμησής του) Κ1 και Κ2 Κ1(Α) = ½ Κ2(Α) = ½ Ο Β αποτιμά τα κομμάτια διαφορετικά Κ1(Β) = x K2(B) = 1-x Αφού ο Β επιλέγει το Κ2 έπεται Κ2(Β) ≥ Κ1(β) => 1-x ≥ x => x ≤ ½ Άρα K2(B) ≥ ½ Επομένως ο Α πιστεύει ότι θα πάρει Κ1(Α)=1/2 της τούρτας και ο Β Κ2(Β)≥1/2 της τούρτας => Και οι δύο ικανοποιημένοι ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Πολυπλοκότητα Αλγορίθμου Ο αλγόριθμος 2 Κόψε & Διάλεξε χρειάζεται μόνο μια κοπή (βέλτιστος) Πως θα μπορούσαμε να λύσουμε το πρόβλημα με 3 επεξεργαστές; ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Αλγόριθμος 3 επεξεργαστών (Κλάδεμα) Έστω ότι έχουμε τον συντονιστή S και τρεις χρήστες U1, U2, U3 Βήμα 1: Ο S ζητά από όλους να κόψουν ένα κομμάτι που κατά τη γνώμη τους αντιστοιχεί στο 1/3 της τούρτας Βήμα 2: Ο S ζητά από τον χρήστη που έκοψε το πιο μικρό κομμάτι να το πάρει Βήμα 3: Ο S ζητά από τους υπόλοιπους χρήστες να εφαρμόσουν τον αλγόριθμο Κόψε & Διάλεξε στο κομμάτι που έμεινε ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι Παράδειγμα Εκτέλεσης Έστω ότι έχουμε τους χρήστες A, B, C B A C C 1/3 For B 1/2 For C >1-1/3 For A,C >1-1/2 For A ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι Απόδειξη Δικαιοσύνης Αρχικά όλοι κόβουν την τούρτα στο σημείο που θεωρούν ότι αξίζει 1/3. Επομένως ο Β θεωρεί ότι πήρε κομμάτι Κ1(Β) = 1/3 Αφού το κομμάτι του ήταν το πιο μικρό σημαίνει ότι η υπόλοιπη τούρτα αξίζει > 1-1/3 για τους Α και C O C ακολούθως μοιράζει στα δύο το υπόλοιπο της τούρτας άρα για τον C το κάθε κομμάτι αξίζει K2(C)=K3(C)>1/2 (1-1/3) => K2(C)=K3(C)>1/3 Αφού ο Α επιλέγει το Κ3 έπεται Κ3(A) ≥ ½ (1-1/3) > 1/3 Επομένως οι Α και C πιστεύουν ότι θα πάρουν >1/3 της τούρτας και ο Β 1/3 της τούρτας => Και οι τρείς ικανοποιημένοι ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Αλγόριθμος Ν επεξεργαστών (Κλάδεμα) Έστω ότι έχουμε τον συντονιστή S και Ν χρήστες U1,..., UΝ Βήμα 1: Ο S ζητά από όλους να κόψουν ένα κομμάτι που κατά τη γνώμη τους αντιστοιχεί στο 1/Ν της τούρτας Βήμα 2: Ο S ζητά από τον χρήστη που έκοψε το πιο μικρό κομμάτι να το πάρει Βήμα 3: Ο S ζητά από τους υπόλοιπους χρήστες να επαναλάβουν τον αλγόριθμο για Ν-1 στο υπόλοιπο κομμάτι της τούρτας ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Πολυπλοκότητα Αλγορίθμου Κλαδέματος Χρειαζόμαστε Ν, Ν-1, Ν-2,..., 1 κοπές Επομένως Αριθμός Κοπών= (Ν(Ν+1)/2) – 1 = Ο(Ν2) Υπάρχει πιο αποδοτικός αλγόριθμος; ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Αλγόριθμος Ν επεξεργαστών (Διαίρει & Βασίλευε) Έστω ότι έχουμε τον συντονιστή S και Ν χρήστες U1,..., UΝ Βήμα 1: Ο S ζητά από όλους να κόψουν ένα κομμάτι που κατά τη γνώμη τους αντιστοιχεί στο 1/2 της τούρτας Βήμα 2: Ο S ζητά από τους Ν/2 χρήστες με τις μικρότερες κοπές να επαναλάβουν τον αλγόριθμο στο αριστερό «μισό» της τούρτας Βήμα 3: Ο S ζητά από τους υπόλοιπους Ν/2 χρήστες να επαναλάβουν τον αλγόριθμο στο δεξί «μισό» της τούρτας ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι Παράδειγμα Εκτέλεσης Για Ν=4 Β C A D A >= 1/4 B >=1/4 C >=1/4 D >=1/4 1/2 For B >=1/2 For B,C 1/2 For C >1/2 For A,D 1/2 For A 1/2 For D ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Πολυπλοκότητα Διαίρει & Βασίλευε Χρειαζόμαστε Ν κοπές σε κάθε γύρο εκτέλεσης των βημάτων Σε logN γύρους κάθε επεξεργαστής θα είναι μόνος του σε κάποιο κομμάτι. Επομένως Αριθμός Κοπών = Ο(ΝlogN) ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι Ερωτήσεις; ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι