Find: ρc [in] from load (4 layers)

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ancient Greek for Everyone: A New Digital Resource for Beginning Greek Unit 4: Conjunctions 2013 edition Wilfred E. Major
Advertisements

Γειά σας. Say: take a pencil. Πάρε ένα μολύβι. Nick, give me my book.
1 Please include the following information on this slide: Παρακαλώ, συμπεριλάβετε τις παρακάτω πληροφoρίες στη διαφάνεια: Name Giannakodimou Aliki Kourkouta.
6 Η ΠΑΡΟΥΣΙΑΣΗ: ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΑΣ, ΜΕΣΩΝ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΦΗΜΙΣΗ.
Translation Tips LG New Testament Greek Fall 2012.
Further Pure 1 Roots of Equations. Properties of the roots of cubic equations Cubic equations have roots α, β, γ (gamma) az 3 + bz 2 + cz + d = 0 a(z.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Παρεμβολή (Interpolation)
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
Lesson 6c: Around the City I JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
 Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.  Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
ΕΥΡΩΠΑΪΚΑ ΣΧΟΛΕΙΑ. SCHOOLS OF EUROPEAN EDUCATION.
Lesson 1a: Basic words, common objects JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Lesson 1a: Let’s Get Started JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Μαθαίνω με “υπότιτλους”
Αντισταθμιστική ανάλυση
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Ερωτήσεις –απαντήσεις Ομάδων Εργασίας
Αντικειμενοστραφής Προγραμματισμός ΙΙ
JSIS E 111: Elementary Modern Greek
JSIS E 111: Elementary Modern Greek
Class X: Athematic verbs II
JSIS E 111: Elementary Modern Greek
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
JSIS E 111: Elementary Modern Greek
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
SANITARY AND STORM SEWER DESIGN A Direct Algebraic Solution
Example Rotary Motion Problems
How to Make Simple Solutions and Dilutions Taken from: Resource Materials for the Biology Core Courses-Bates College (there may be errors!!)
JSIS E 111: Elementary Modern Greek
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ1 [kPa] for CD test at failure
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
Find: σ’v at d=30 feet in [lb/ft2]
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
ΜΕΤΑΦΡΑΣΗ ‘ABC of Selling’. ΤΟ ΑΛΦΑΒΗΤΑΡΙ ΤΩΝ ΠΩΛΗΣΕΩΝ
Find: Force on culvert in [lb/ft]
Class IV Aorist Adverbial Participle © Dr. Esa Autero
3Ω 17 V A3 V3.
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
3Ω 17 V A3 V3.
Deriving the equations of
Μεταβλητή Κοστολόγηση: Εργαλείο Διοίκησης
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Κόστους –Όγκου – Κέρδους
Κοστολόγηση κατά Φάση Τέταρτο Κεφάλαιο
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
Personal Pronouns.
Erasmus + An experience with and for refugees Fay Pliagou.
Class X: Athematic verbs II © Dr. Esa Autero
April News from Mrs. Barham
Μεταγράφημα παρουσίασης:

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 1.0 2.5 C) 5 D) 7.5 Sand 10 ft γT=100 [lb/ft3] Clay 40 ft Find the consolidation settlement of the clay, using 4 layers. In this problem, wc = 37% Cc=0.72 OCR=1.0

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 1.0 2.5 C) 5 D) 7.5 Sand 10 ft γT=100 [lb/ft3] Clay 40 ft an incremental load of 200 pounds per square foot is added to a soil profile -- wc = 37% Cc=0.72 OCR=1.0

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 1.0 2.5 C) 5 D) 7.5 Sand 10 ft γT=100 [lb/ft3] Clay 40 ft consisting of a 10 foot layer of sand, wc = 37% Cc=0.72 OCR=1.0

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 1.0 2.5 C) 5 D) 7.5 Sand 10 ft γT=100 [lb/ft3] Clay 40 ft and a 40 foot layer of clay. wc = 37% Cc=0.72 OCR=1.0

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 1.0 2.5 C) 5 D) 7.5 Sand 10 ft γT=100 [lb/ft3] Clay 40 ft We’ve also been given some soil properties. And we notice --- wc = 37% Cc=0.72 OCR=1.0

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 1.0 2.5 C) 5 D) 7.5 Sand 10 ft γT=100 [lb/ft3] Clay 40 ft the groundwater table is at the sand-clay interface. wc = 37% Cc=0.72 OCR=1.0

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 1.0 2.5 C) 5 D) 7.5 Sand 10 ft γT=100 [lb/ft3] Clay 40 ft --- wc = 37% Cc=0.72 OCR=1.0

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] Sand 10 ft γT=100 [lb/ft3] Clay 40 ft The generalized equation for --- wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σ’final ρc= log Load=200[lb/ft2] Sand 10 ft H*C σ’final ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay 40 ft consolidation settlement is wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay 40 ft the height, or thickness, of the layer, wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay 40 ft times the compression index, wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay 40 ft divided by 1 plus the initial void ratio, wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay 40 ft all multiplied by the logarithm of the final vertical effective stress divided by the initial vertical effective stress. [pause] wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay 40 ft Notice the over consolidation ratio in the clay layer is 1, so, the clay is normally consolidated, wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay 40 ft and we only need to know it’s compression index, which we’ve been given. wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay 40 ft We assume no consolidation settlement occurs in course grain soils, such as sand. wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay 40 ft So the only consolidation will occur in the clay layer. wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay 40 ft The problem states to evaluate the consolidation in 4 layers, wc = 37% Cc=0.72 OCR=1.0

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay layer 1 40 ft layer 2 so, we’ll evaluate 4, equally thick, 10 foot layers of clay. wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc= log 1+e σinitial Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) ρc= 1+e σinitial log γT=100 [lb/ft3] ‘ ‘ Clay layer 1 40 ft layer 2 Rather than evaluate the settlement from one layer, wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 we’ll evaluate the settlement from n separate layers, wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 where in this case n, equals 4, one for each layer. wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 The height of each later is 10 feet, wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 and the compression index is 0.72, wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) ? Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 ? 40 ft layer 2 but we don’t know the initial void ratio of the clay layer. wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) ? ? Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] ? 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 ? 40 ft layer 2 nor do we know the initial or final vertical effective stresses. wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 Let’s first solve for the initial void ratio. wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] Sand 10 ft γT=100 [lb/ft3] Clay layer 1 40 ft layer 2 One way to solve this problem --- wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

γd= Find: ρc [in] from load (4 layers) γT=100 [lb/ft3] SG * γw Sand Load=200[lb/ft2] γd= SG * γw wc*SG+1 Sand 10 ft γT=100 [lb/ft3] Clay layer 1 40 ft layer 2 is to first solve for the dry unit weight, wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

γd= Find: ρc [in] from load (4 layers) γT=100 [lb/ft3] SG * γw Sand Load=200[lb/ft2] γd= SG * γw wc*SG+1 2.70 Sand 10 ft γT=100 [lb/ft3] Clay layer 1 40 ft layer 2 where, the specific gravity of clay is 2.7. wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

γd= Find: ρc [in] from load (4 layers) γT=100 [lb/ft3] SG * γw Sand Load=200[lb/ft2] γd= SG * γw wc*SG+1 2.70 Sand 10 ft γT=100 [lb/ft3] 62.4 [lb/ft3] Clay layer 1 40 ft layer 2 The unit weight of water is 62.4 pounds per cubic feet, wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

γd= Find: ρc [in] from load (4 layers) γT=100 [lb/ft3] SG * γw Sand Load=200[lb/ft2] γd= SG * γw wc*SG+1 2.70 Sand 10 ft γT=100 [lb/ft3] 62.4 [lb/ft3] Clay layer 1 0.37 40 ft layer 2 And the water content is 0.37. wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

γd= γd = 84.28 [lb/ft3] Find: ρc [in] from load (4 layers) Load=200[lb/ft2] γd= SG * γw wc*SG+1 2.70 Sand 10 ft γT=100 [lb/ft3] 62.4 [lb/ft3] Clay layer 1 0.37 γd = 84.28 [lb/ft3] 40 ft layer 2 The dry unit weight is 84.28 pounds per cubic foot. Next we solve --- wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

γd= γd = 84.28 [lb/ft3] γd Find: ρc [in] from load (4 layers) e= -1 Load=200[lb/ft2] γd= SG * γw wc*SG+1 2.70 Sand 10 ft γT=100 [lb/ft3] 62.4 [lb/ft3] Clay layer 1 0.37 γd = 84.28 [lb/ft3] 40 ft layer 2 for the void ratio and plug in our wc = 37% Cc=0.72 OCR=1.0 layer 3 e= -1 γd SG*γw layer 4

γd= γd = 84.28 [lb/ft3] γd Find: ρc [in] from load (4 layers) e= -1 Load=200[lb/ft2] γd= SG * γw wc*SG+1 2.70 Sand 10 ft γT=100 [lb/ft3] 62.4 [lb/ft3] Clay layer 1 0.37 γd = 84.28 [lb/ft3] 40 ft layer 2 specific gravity, wc = 37% Cc=0.72 OCR=1.0 layer 3 e= -1 γd SG*γw layer 4

γd= γd = 84.28 [lb/ft3] γd Find: ρc [in] from load (4 layers) e= -1 Load=200[lb/ft2] γd= SG * γw wc*SG+1 2.70 Sand 10 ft γT=100 [lb/ft3] 62.4 [lb/ft3] Clay layer 1 0.37 γd = 84.28 [lb/ft3] 40 ft layer 2 unit weight of water, wc = 37% Cc=0.72 OCR=1.0 layer 3 e= -1 γd SG*γw layer 4

γd= γd = 84.28 [lb/ft3] γd Find: ρc [in] from load (4 layers) e= -1 Load=200[lb/ft2] γd= SG * γw wc*SG+1 2.70 Sand 10 ft γT=100 [lb/ft3] 62.4 [lb/ft3] Clay layer 1 0.37 γd = 84.28 [lb/ft3] 40 ft layer 2 and dry unit weight. wc = 37% Cc=0.72 OCR=1.0 layer 3 e= -1 γd SG*γw layer 4

γd= γd = 84.28 [lb/ft3] γd Find: ρc [in] from load (4 layers) e= -1 Load=200[lb/ft2] γd= SG * γw wc*SG+1 2.70 Sand 10 ft γT=100 [lb/ft3] 62.4 [lb/ft3] Clay layer 1 0.37 γd = 84.28 [lb/ft3] 40 ft layer 2 The initial void ratio of the clay is 1. wc = 37% Cc=0.72 OCR=1.0 layer 3 e= -1 γd SG*γw layer 4 e=1.00

( ) ? Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 ? 40 ft layer 2 --- wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 Next we solve for --- 1.00 wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) ? Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] ? 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 the vertical effective stresses of the clay layer both before and after loading. 1.00 wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) ? Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] ? 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 Let’s first work through layer 1 --- 1.00 wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) ? Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] ? 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 which is the first --- 1.00 wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) ? Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] ? 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 Of 4 layers. 1.00 wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc = ρc1+ρc2+ρc3+ρc4 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 We’ll solve for the initial --- 1.00 wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 vertical effective stress of layer 1 at a point 1.00 wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 in the middle of the layer, which in this case --- 1.00 wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 would be 5 feet beneath the sand-clay interface. 1.00 wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 So we multiply the effective unit weight times the height, 1.00 wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = Σ γ’ * d layer 3 layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 40 ft layer 2 for both the sand layer and the portion of the clay layer above our point of interest. 1.00 wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = Σ γ’ * d layer 3 σ’1,initial = γ’1,sand*d1,sand layer 4 + γ’1,clay*d1,clay

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] Sand 10 ft γT=100 [lb/ft3] Clay layer 1 40 ft layer 2 wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = Σ γ’ * d layer 3 σ’1,initial = γ’1,sand*d1,sand layer 4 + γ’1,clay*d1,clay

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d Sand 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 The effective unit weight of sand --- wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 is 100 pounds per cubic foot, which is the same as the total unit weight, since there is no pore water pressure. wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 The depth of the sand layer is 10 feet. The depth of the clay layer --- wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 In the middle of layer 1, is 5 feet, 5 [ft] wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

? Find: ρc [in] from load (4 layers) σ’1,initial = Σ γ * d Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 ? 40 ft layer 2 And we do not know the effective unit weight of the clay layer. 5 [ft] wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

? Find: ρc [in] from load (4 layers) γd = 84.28 [lb/ft3] Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 ? 40 ft layer 2 However, when solving for the initial void ratio, in one of our intermediate steps, we determined the dry unit weight. 5 [ft] γd = 84.28 [lb/ft3] wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

? Find: ρc [in] from load (4 layers) γd = 84.28 [lb/ft3] Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 ? 40 ft layer 2 And knowing the water content, we can solve for --- 5 [ft] γd = 84.28 [lb/ft3] wc = 37% Cc=0.72 OCR=1.0 layer 3 wc=37% layer 4

? Find: ρc [in] from load (4 layers) γd = 84.28 [lb/ft3] Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 ? 40 ft layer 2 the total unit weight 5 [ft] γd = 84.28 [lb/ft3] wc = 37% Cc=0.72 OCR=1.0 layer 3 wc=37% layer 4 γT = γd * (1+wc)

? Find: ρc [in] from load (4 layers) γd = 84.28 [lb/ft3] Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 ? 40 ft layer 2 We plug in our values 5 [ft] γd = 84.28 [lb/ft3] wc = 37% Cc=0.72 OCR=1.0 layer 3 wc=37% layer 4 γT = γd * (1+wc)

? Find: ρc [in] from load (4 layers) γd = 84.28 [lb/ft3] Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 ? 40 ft layer 2 And the total unit weight of the clay layer is --- 5 [ft] γd = 84.28 [lb/ft3] wc = 37% Cc=0.72 OCR=1.0 layer 3 wc=37%=0.37 layer 4 γT = γd * (1+wc)

? Find: ρc [in] from load (4 layers) γd = 84.28 [lb/ft3] Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 ? 40 ft layer 2 115.46 pounds per cubic feet. 5 [ft] γd = 84.28 [lb/ft3] wc = 37% Cc=0.72 OCR=1.0 layer 3 wc=37%=0.37 layer 4 γT = γd * (1+wc) γT = 115.46 [lb/ft3]

? Find: ρc [in] from load (4 layers) γd = 84.28 [lb/ft3] Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 ? 40 ft layer 2 So we subtract --- 5 [ft] γd = 84.28 [lb/ft3] wc = 37% Cc=0.72 OCR=1.0 layer 3 wc=37%=0.37 layer 4 γT = γd * (1+wc) γ’1,clay = γT - γw γT = 115.46 [lb/ft3]

? Find: ρc [in] from load (4 layers) γd = 84.28 [lb/ft3] Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 ? 40 ft layer 2 115.46 minus --- 5 [ft] γd = 84.28 [lb/ft3] wc = 37% Cc=0.72 OCR=1.0 layer 3 wc=37%=0.37 layer 4 γT = γd * (1+wc) γ’1,clay = γT - γw γT = 115.46 [lb/ft3]

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 62.4, to get an effective unit weight of 5 [ft] γd = 84.28 [lb/ft3] wc = 37% Cc=0.72 OCR=1.0 layer 3 wc=37%=0.37 layer 4 γT = γd * (1+wc) γ’1,clay = γT - γw γT = 115.46 [lb/ft3] 62.4 [lb/ft3]

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 53.1 [lb/ft3] 53.1 pounds per cubic feet, in the clay layer. 5 [ft] γd = 84.28 [lb/ft3] wc = 37% Cc=0.72 OCR=1.0 layer 3 wc=37%=0.37 layer 4 γT = γd * (1+wc) γ’1,clay = γT - γw γT = 115.46 [lb/ft3] 62.4 [lb/ft3]

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 53.1 [lb/ft3] So our initial vertical effective stress, 5 [ft] wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 53.1 [lb/ft3] for layer 1 is 1,266 pounds per square feet. The final vertical effective stress --- 5 [ft] wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = 1,266 [lb/ft2] layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 53.1 [lb/ft3] is equal to the initial vertical --- 5 [ft] wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = 1,266 [lb/ft2] layer 3 σ’1,final = σ’1,initial +load layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 53.1 [lb/ft3] effective stress, 5 [ft] wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = 1,266 [lb/ft2] layer 3 σ’1,final = σ’1,initial +load layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 53.1 [lb/ft3] plus the added load, of 200 pounds per square foot 5 [ft] wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = 1,266 [lb/ft2] layer 3 σ’1,final = σ’1,initial +load layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 53.1 [lb/ft3] Or, 1,466 pounds per square foot. 5 [ft] wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = 1,266 [lb/ft2] layer 3 σ’1,final = σ’1,initial +load layer 4 σ’1,final = 1,466 [lb/ft2]

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 53.1 [lb/ft3] --- 5 [ft] wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = 1,266 [lb/ft2] layer 3 σ’1,final = σ’1,initial +load layer 4 σ’1,final = 1,466 [lb/ft2]

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 53.1 [lb/ft3] So we have our initial --- 5 [ft] wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = 1,266 [lb/ft2] layer 3 σ’1,final = σ’1,initial +load layer 4 σ’1,final = 1,466 [lb/ft2]

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’1,initial = Σ γ * d 10 [ft] Sand 100 [lb/ft3] 10 ft σ’1,initial = γ’sand*dsand γT=100 [lb/ft3] + γ’1,clay*d1,clay Clay layer 1 40 ft layer 2 53.1 [lb/ft3] and final stress values --- 5 [ft] wc = 37% Cc=0.72 OCR=1.0 σ’1,initial = 1,266 [lb/ft2] layer 3 σ’1,final = σ’1,initial +load layer 4 σ’1,final = 1,266 [lb/ft2]

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] Sand 10 ft γT=100 [lb/ft3] Clay layer 1 40 ft layer 2 and can solve for the--- wc = 37% Cc=0.72 OCR=1.0 layer 3 σ’1,initial = 1,266 [lb/ft2] layer 4 σ’1,final = 1,466 [lb/ft2]

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 1.00 40 ft layer 2 consolidation settlement --- wc = 37% Cc=0.72 OCR=1.0 layer 3 σ’1,initial = 1,266 [lb/ft2] layer 4 σ’1,final = 1,466 [lb/ft2]

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 1.00 40 ft layer 2 of the first layer, 1,266 [lb/ft2] wc = 37% Cc=0.72 OCR=1.0 layer 3 σ’1,initial = 1,266 [lb/ft2] layer 4 σ’1,final = 1,466 [lb/ft2]

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 1,466 [lb/ft2] Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 1.00 40 ft layer 2 Which turns out to be, 1,266 [lb/ft2] wc = 37% Cc=0.72 OCR=1.0 layer 3 σ’1,initial = 1,266 [lb/ft2] layer 4 σ’1,final = 1,466 [lb/ft2]

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 1,466 [lb/ft2] Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 1.00 40 ft layer 2 2.75 inches. 1,266 [lb/ft2] wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc1=2.75 [in] layer 4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 1,466 [lb/ft2] Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 1.00 40 ft layer 2 Keep in mind, 1,266 [lb/ft2] wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc1=2.75 [in] layer 4 ρc = ρc1+ρc2+ρc3+ρc4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 1,466 [lb/ft2] Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 1.00 40 ft layer 2 this is just one of the four, 1,266 [lb/ft2] wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc1=2.75 [in] layer 4 ρc = ρc1+ρc2+ρc3+ρc4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 1,466 [lb/ft2] Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 1.00 40 ft layer 2 10-foot thick clay layers to evaluate. 1,266 [lb/ft2] wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc1=2.75 [in] layer 4 ρc = ρc1+ρc2+ρc3+ρc4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρc1= log Load=200[lb/ft2] 10 [ft] 0.72 1,466 [lb/ft2] Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρc1= log 1+e σinitial ‘ Clay layer 1 1.00 40 ft layer 2 Layers 2, 3 and 4 can be solved in a similar fashion. 1,266 [lb/ft2] wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc1=2.75 [in] layer 4 ρc = ρc1+ρc2+ρc3+ρc4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 1.00 40 ft layer 2 The first part of the settlement equation is the same, wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc1=2.75 [in] layer 4 ρc = ρc1+ρc2+ρc3+ρc4

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] 10 [ft] 0.72 Sand 10 ft H*C σfinal ( ) γT=100 [lb/ft3] ‘ ρcn= log 1+e σinitial ‘ Clay layer 1 1.00 40 ft layer 2 The only difference is the initial and final stress values. wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc1=2.75 [in] layer 4 ρc = ρc1+ρc2+ρc3+ρc4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 40 ft layer 2 The initial effective vertical stress -- wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 100 [lb/ft3] 10 [ft] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 53.1 [lb/ft3] 40 ft layer 2 for layers 2, 3 and 4. Will be evaluated at points --- wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 100 [lb/ft3] 10 [ft] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 53.1 [lb/ft3] 15 [ft] 40 ft layer 2 15, wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 100 [lb/ft3] 10 [ft] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 53.1 [lb/ft3] 15 [ft] 40 ft layer 2 25 [ft] 25, wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 100 [lb/ft3] 10 [ft] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 53.1 [lb/ft3] 15 [ft] 40 ft layer 2 25 [ft] And 35 feet beneath the sand-clay interface. At this point it would be --- 35 [ft] wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 100 [lb/ft3] 10 [ft] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 53.1 [lb/ft3] 15 [ft] 40 ft layer 2 25 [ft] convenient to set up a table of values --- 35 [ft] wc = 37% Cc=0.72 OCR=1.0 Layer σ’initial σ’final layer 3 2 layer 4 3 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 100 [lb/ft3] 10 [ft] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 53.1 [lb/ft3] 15 [ft] 40 ft layer 2 25 [ft] For the initial and final --- 35 [ft] wc = 37% Cc=0.72 OCR=1.0 Layer σ’initial σ’final layer 3 2 1,797 layer 4 3 2,328 4 2,859

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 100 [lb/ft3] 10 [ft] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 53.1 [lb/ft3] 15 [ft] 40 ft layer 2 25 [ft] effective vertical stresses --- 35 [ft] wc = 37% Cc=0.72 OCR=1.0 Layer σ’initial σ’final layer 3 2 1,797 layer 4 3 2,328 4 2,859 σ’final = σ’initial +load

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 100 [lb/ft3] 10 [ft] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 53.1 [lb/ft3] 15 [ft] 40 ft layer 2 25 [ft] where the final is equal to the initial 35 [ft] wc = 37% Cc=0.72 OCR=1.0 Layer σ’initial σ’final layer 3 2 1,797 layer 4 3 2,328 4 2,859 σ’final = σ’initial + load

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 100 [lb/ft3] 10 [ft] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 53.1 [lb/ft3] 15 [ft] 40 ft layer 2 25 [ft] plus the load. 35 [ft] wc = 37% Cc=0.72 OCR=1.0 Layer σ’initial σ’final layer 3 2 1,797 1,997 layer 4 3 2,328 2,528 4 2,859 3,059 σ’final = σ’initial + load

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 100 [lb/ft3] 10 [ft] σ’initial = γ’sand*dsand Sand 10 ft γT=100 [lb/ft3] + γ’clay*dclay Clay layer 1 53.1 [lb/ft3] 15 [ft] 40 ft layer 2 25 [ft] Returning to our --- 35 [ft] wc = 37% Cc=0.72 OCR=1.0 Layer σ’initial σ’final layer 3 2 1,797 1,997 layer 4 3 2,328 2,528 4 2,859 3,059 σ’final = σ’initial + load

( ) Find: ρc [in] from load (4 layers) H*C σfinal ρcn= log Load=200[lb/ft2] ( ) H*C σfinal ρcn= 1+e σinitial log ‘ Sand 10 ft γT=100 [lb/ft3] Clay layer 1 40 ft layer 2 Consolidation settlement equation, wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 10[ft]*0.72 ρc2= 1,997 Sand log 10 ft 1+1 1,797 γT=100 [lb/ft3] Clay layer 1 40 ft layer 2 The second layer will consolidate --- wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 10[ft]*0.72 ρc2= 1,997 Sand log 10 ft 1+1 1,797 γT=100 [lb/ft3] ρc2= 1.98[in] Clay layer 1 40 ft layer 2 1.98 inches, wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 10[ft]*0.72 ρc2= 1,997 Sand log 10 ft 1+1 1,797 γT=100 [lb/ft3] ρc2= 1.98[in] Clay layer 1 10[ft]*0.72 ρc3= 2,528 log 40 ft layer 2 The third layer will consolidate --- 1+1 2,328 wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 10[ft]*0.72 ρc2= 1,997 Sand log 10 ft 1+1 1,797 γT=100 [lb/ft3] ρc2= 1.98[in] Clay layer 1 10[ft]*0.72 ρc3= 2,528 log 40 ft layer 2 1.62 inches. And the 1+1 2,328 wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc3= 1.62[in] layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 10[ft]*0.72 ρc2= 1,997 Sand log 10 ft 1+1 1,797 γT=100 [lb/ft3] ρc2= 1.98[in] Clay layer 1 10[ft]*0.72 ρc3= 2,528 log 40 ft layer 2 Fourth layer will consolidate 1+1 2,328 wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc3= 1.62[in] 10[ft]*0.72 layer 4 ρc4= 3,059 log 1+1 2,859

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 10[ft]*0.72 ρc2= 1,997 Sand log 10 ft 1+1 1,797 γT=100 [lb/ft3] ρc2= 1.98[in] Clay layer 1 10[ft]*0.72 ρc3= 2,528 log 40 ft layer 2 1.27 inches. 1+1 2,328 wc = 37% Cc=0.72 OCR=1.0 layer 3 ρc3= 1.62[in] 10[ft]*0.72 layer 4 ρc4= 3,059 log 1+1 2,859 = 1.27[in]

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] Sand 10 ft γT=100 [lb/ft3] ρc = ρc1+ρc2+ρc3+ρc4 Clay layer 1 40 ft layer 2 Adding the settlement from all 4 layers, wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 2.75 [in] 1.62 [in] Sand 10 ft γT=100 [lb/ft3] ρc = ρc1+ρc2+ρc3+ρc4 Clay layer 1 1.27 [in] 1.98 [in] 40 ft layer 2 The settlement from consolidation is --- wc = 37% Cc=0.72 OCR=1.0 layer 3 layer 4

Find: ρc [in] from load (4 layers) Load=200[lb/ft2] 2.75 [in] 1.62 [in] Sand 10 ft γT=100 [lb/ft3] ρc = ρc1+ρc2+ρc3+ρc4 Clay layer 1 1.27 [in] 1.98 [in] 40 ft layer 2 7.62 inches. When compared to --- wc = 37% Cc=0.72 OCR=1.0 ρc = 7.62 [in] layer 3 layer 4

Find: ρc [in] from load (4 layers) 1.0 2.5 C) 5 D) 7.5 Load=200[lb/ft2] 2.75 [in] 1.62 [in] Sand 10 ft γT=100 [lb/ft3] ρc = ρc1+ρc2+ρc3+ρc4 Clay layer 1 1.27 [in] 1.98 [in] 40 ft layer 2 the possible solutions, wc = 37% Cc=0.72 OCR=1.0 ρc = 7.62 [in] layer 3 layer 4

Find: ρc [in] from load (4 layers) 1.0 2.5 C) 5 D) 7.5 Load=200[lb/ft2] 2.75 [in] 1.62 [in] Sand 10 ft γT=100 [lb/ft3] ρc = ρc1+ρc2+ρc3+ρc4 Clay layer 1 1.27 [in] 1.98 [in] 40 ft layer 2 the answer is D. [end] wc = 37% Cc=0.72 OCR=1.0 ρc = 7.62 [in] layer 3 layer 4 Answer: D

( ) ? γclay=53.1[lb/ft3] Index σ’v = Σ γ d H*C σfinal ρcn= log Find: σ’v ρc d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4 ( ) H*C σfinal ρcn= 1+e σinitial log ‘