Find: σ1 [kPa] for CD test at failure

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ancient Greek for Everyone: A New Digital Resource for Beginning Greek Unit 4: Conjunctions 2013 edition Wilfred E. Major
Advertisements

Γειά σας. Say: take a pencil. Πάρε ένα μολύβι. Nick, give me my book.
1 Please include the following information on this slide: Παρακαλώ, συμπεριλάβετε τις παρακάτω πληροφoρίες στη διαφάνεια: Name Giannakodimou Aliki Kourkouta.
6 Η ΠΑΡΟΥΣΙΑΣΗ: ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΑΣ, ΜΕΣΩΝ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΦΗΜΙΣΗ.
WRITING TEACHER ELENI ROSSIDOU ©Υπουργείο Παιδείας και Πολιτισμού.
Translation Tips LG New Testament Greek Fall 2012.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Προσομοίωση Δικτύων 2n Άσκηση Δημιουργία, διαμόρφωση μελέτη επικοινωνιακών ζεύξεων.
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
Ψηφιακά Παιχνίδια και μάθηση Δρ. Νικολέτα Γιαννούτσου Εργαστήριο Εκπαιδευτικής Τεχνολογίας.
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Acts 4:34 – 5:11 God’s warning shot.
JSIS E 111: Elementary Modern Greek
Επανασχεδιασμός του Ευρωπαϊκού Συστήματος Ενδοκοινοτικών Συναλλαγών (Revised Intrastat) Η συγκεκριμένη παρουσίαση συνοψίζει την ανάλυση των αποτελεσμάτων.
Matrix Analytic Techniques
Αν. Καθηγητής Γεώργιος Ευθύμογλου
Αν. Καθηγητής Γεώργιος Ευθύμογλου
JSIS E 111: Elementary Modern Greek
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΟΡΓΑΝΩΣΗ ΑΘΛΗΤΙΚΗΣ ΕΓΚΑΤΑΣΤΑΣΗΣ
Μουσενίκας Δημήτριος Βλάχος Χριστόδουλος
SANITARY AND STORM SEWER DESIGN A Direct Algebraic Solution
Example Rotary Motion Problems
Υπολογισμός ορθών δυνάμεων, τεμνουσών δυνάμεων, και καμπτικών ροπών
2013 edition Wilfred E. Major
Επικοινωνία & Δημόσιες Σχέσεις στον Τουρισμό
Εκπαιδευτική ρομποτική
JSIS E 111: Elementary Modern Greek
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
ΑΠΟΣΤΑΞΗ Distillation.
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
ΑΝΟΡΓΑΝΗ & ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
Find: σ’v at d=30 feet in [lb/ft2]
Βάλια Τόλιου, Registry Manager for Greece
Καθηγητής Γεώργιος Ευθύμογλου
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
ΜΕΤΑΦΡΑΣΗ ‘ABC of Selling’. ΤΟ ΑΛΦΑΒΗΤΑΡΙ ΤΩΝ ΠΩΛΗΣΕΩΝ
Find: Force on culvert in [lb/ft]
Τεχνολογία & εφαρμογές μεταλλικών υλικών
3Ω 17 V A3 V3.
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
Law of Sine Chapter 8.2.
Deriving the equations of
Variable-wise and Term-wise Recentering
JSIS E 111: Elementary Modern Greek
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Find: ρc [in] from load (4 layers)
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
CPSC-608 Database Systems
Erasmus + An experience with and for refugees Fay Pliagou.
Entry 27 – Starter Copy and simplify
Trigonometry – Sine & Cosine – Angles – Demonstration
Μεταγράφημα παρουσίασης:

Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] 600 750 900 D) 1,200 Find the axial stress at failure when the confining stress is 150 kilopascals, for a sand sample tested in the consolidated drained condition. [pause] In this problem, ---

Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] 600 750 900 D) 1,200 data has been provided from a triaxial shear test for the sand sample in the consolidated un-drained condition.

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] We begin by plotting the confining stress at failure from the undrained test, σ [kPa]

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] 70 kilopascals. [pause] Next we compute the --- σ [kPa] 70

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] σ1 = σ3+Δσ axial stress at failure to be --- σ [kPa] 70

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] σ1 = σ3+Δσ the confining stress at failure, plus, --- σ [kPa] 70

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] σ1 = σ3+Δσ the deviator stress at failure, to get --- σ [kPa] 70

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] σ1 = σ3+Δσ = 170 [kPa] 170 kilopascals, --- σ [kPa] 70

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] σ1 = σ3+Δσ = 170 [kPa] and the point is plotted. [pause] A semi circle is drawn between --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] σ1 = σ3+Δσ = 170 [kPa] these two stress values. Keep in mind, --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] σ1 = σ3+Δσ = 170 [kPa] this is an un-drained test, and the problem asks to find, --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] σ1 = σ3+Δσ = 170 [kPa] the major principle stress during the drained condition. So the given stress values for the --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] σ1 = σ3+Δσ = 170 [kPa] un-drained test include the pore water pressure. The effective stress values can be computed --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] σ3’ = σ3-u σ1 = σ3+Δσ σ1’ = σ1-u = 170 [kPa] by subtracting the pore water pressure from the total stress, for both sigma 3, the confining stress, and sigma 1, the axial stress. σ [kPa] 70 170

τ [kPa] ? σ [kPa] Find: σ1 [kPa] for CD test at failure σ1 = σ3+Δσ if σ3 = 150 [kPa] CU test data: σ3 = 70 [kPa] Sand d= 5.1 [m] Δσ= 100 [kPa] τ [kPa] ? σ3’ = σ3-u σ1 = σ3+Δσ σ1’ = σ1-u = 170 [kPa] However we still need to compute the pore water pressure for the un-drained soil sample. σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: u = ρw * g * d Sand d= 5.1 [m] τ [kPa] σ3’ = σ3-u σ1’ = σ1-u We do so by multiplying --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] τ [kPa] σ3’ = σ3-u σ1’ = σ1-u the density of water --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] 9.81 [m/s2] τ [kPa] σ3’ = σ3-u σ1’ = σ1-u times the gravitational acceleration, --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] 9.81 [m/s2] τ [kPa] σ3’ = σ3-u σ1’ = σ1-u times the depth beneath the groundwater table. [pause] The pore water pressure at this depth is --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] 9.81 [m/s2] τ [kPa] σ3’ = σ3-u = 50 [kPa] σ1’ = σ1-u 50 kilopascals. [pause] σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] 9.81 [m/s2] τ [kPa] σ3’ = σ3-u = 50 [kPa] σ1’ = σ1-u Plugging in our pore water pressure, --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] 9.81 [m/s2] τ [kPa] σ3’ = σ3-u = 50 [kPa] σ1’ = σ1-u and our total stress values, the effective confining and --- σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] 9.81 [m/s2] τ [kPa] σ3’ = σ3-u = 50 [kPa] σ1’ = σ1-u and axial stress values are 20 kilopascals and 120 kilopascals, respectively. 20[kPa] 120[kPa] σ [kPa] 70 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] 9.81 [m/s2] τ [kPa] σ3’ = σ3-u = 50 [kPa] σ1’ = σ1-u These points are plotted on the graph, and connected --- 20[kPa] 120[kPa] σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] 9.81 [m/s2] τ [kPa] σ3’ = σ3-u = 50 [kPa] σ1’ = σ1-u by a semicircle. [pause] The pore water pressure --- 20[kPa] 120[kPa] σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] 9.81 [m/s2] τ [kPa] σ3’ = σ3-u = 50 [kPa] σ1’ = σ1-u of 50 kilopascals shifted the semicircle --- 20[kPa] 120[kPa] σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] 1,000 [kg/m3] CU test data: u = ρw * g * d Sand d= 5.1 [m] 9.81 [m/s2] τ [kPa] σ3’ = σ3-u = 50 [kPa] σ1’ = σ1-u to the left, on our plot. 20[kPa] 120[kPa] σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: Sand d= 5.1 [m] τ [kPa] Now we have a semicircle for the ---- σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: Sand d= 5.1 [m] τ [kPa] un-drained condition, --- undrained σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: Sand d= 5.1 [m] τ [kPa] and for the drained condition. The problem asks about the drained condition when --- undrained drained σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: Sand d= 5.1 [m] τ [kPa] the confining stress is 150 kilopascals. undrained drained σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: Sand d= 5.1 [m] τ [kPa] Since sand is a coarse grain, cohesionless soil, a point is plotted at the origin, --- undrained drained σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: Sand d= 5.1 [m] τ [kPa] and the rupture line is traced, tangent to the drained semicircle, --- undrained drained σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: Sand d= 5.1 [m] τ [kPa] φ and the angle of internal friction is identified. [pause] undrained drained σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] σ1-σ3 CU test data: φ=sin-1 σ1+σ3 Sand d= 5.1 [m] τ [kPa] φ Since the cohesion is zero, the angle of internal friction can be computed --- undrained drained σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] φ=sin-1 σ1-σ3 σ1+σ3 CU test data: Sand d= 5.1 [m] τ [kPa] φ by plugging in the appropriate stress values. [pause] The angle of internal friction is --- undrained drained σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] φ=sin-1 σ1-σ3 σ1+σ3 CU test data: Sand = 45.58˚ d= 5.1 [m] τ [kPa] φ 45.58 degrees. undrained drained σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] φ=sin-1 σ1-σ3 σ1+σ3 CU test data: Sand = 45.58˚ d= 5.1 [m] τ [kPa] 45.58˚ The problem asks for the axial stress, when the confining stress is 150 kilopascals. undrained drained σ [kPa] 20 70 120 170

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: Sand d= 5.1 [m] τ [kPa] 45.58˚ So 150 kilopascals is plotted on the graph, and the rupture line is --- σ [kPa] 20 120 150

τ [kPa] σ [kPa] Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: Sand d= 5.1 [m] τ [kPa] 45.58˚ extended outward. Next, a semicircle is drawn tangent to rupture line and passing through 150 kilopascals. σ [kPa] 20 120 150

τ [kPa] σ [kPa] σ1 Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: Sand d= 5.1 [m] τ [kPa] 45.58˚ This graph is too small to see the value of the axial stress, --- σ [kPa] 20 120 150 σ1

τ [kPa] σ [kPa] σ1 Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: 1+sin(φ) σ1 = Sand 1-sin(φ) σ3 d= 5.1 [m] τ [kPa] 45.58˚ but it can be solved mathematically by knowing the friction angle, --- σ [kPa] 20 120 150 σ1

τ [kPa] σ [kPa] σ1 Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: 1+sin(φ) σ1 = Sand 1-sin(φ) σ3 d= 5.1 [m] τ [kPa] 1+sin(φ) 45.58˚ σ1=σ3 1-sin(φ) and confining stress, and by known the cohesion is zero. [pause] σ [kPa] 20 120 150 σ1

τ [kPa] σ [kPa] σ1 Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: 1+sin(φ) σ1 = Sand 1-sin(φ) σ3 d= 5.1 [m] τ [kPa] 1+sin(φ) 45.58˚ σ1=σ3 1-sin(φ) The values are plugged in, and our axial stress computes to --- σ [kPa] 20 120 150 σ1

τ [kPa] σ [kPa] σ1 Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: 1+sin(φ) σ1 = Sand 1-sin(φ) σ3 d= 5.1 [m] τ [kPa] 1+sin(φ) 45.58˚ σ1=σ3 1-sin(φ) 900 kilopascals. [pause] = 900 [kPa] σ [kPa] 20 120 150 σ1

τ [kPa] σ [kPa] σ1 Find: σ1 [kPa] for CD test at failure if σ3 = 150 [kPa] CU test data: 1+sin(φ) σ1 = Sand 1-sin(φ) σ3 d= 5.1 [m] τ [kPa] 1+sin(φ) 600 750 900 D) 1,200 σ1=σ3 1-sin(φ) Upon reviewing or possible solutions, --- = 900 [kPa] σ [kPa] 20 120 150 σ1

τ [kPa] σ1 Find: σ1 [kPa] for CD test at failure AnswerC if σ3 = 150 [kPa] CU test data: 1+sin(φ) σ1 = Sand 1-sin(φ) σ3 d= 5.1 [m] τ [kPa] 1+sin(φ) 600 750 900 D) 1,200 σ1=σ3 1-sin(φ) the answer is C. = 900 [kPa] AnswerC 20 120 150 σ1

( ) ? τ [lb/ft2] γclay=53.1[lb/ft3] Index σ’v = Σ φ γ Δ d ˚ H*C σfinal Find: σ’v ρc d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ φ γ Δ d ˚ d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] φ=α1-α2 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] τ [lb/ft2] (5 [cm])2 * π/4 ( ) H*C σfinal ρcn= 1+e σinitial log ‘ φ c=0 400 1,400 σ3 Sand σ1