KVES Elektrotechnická fakulta ŽU Príspevok skratových prúdov od asynchrónnych motorov Vplyv ASM môžeme zanedbať ak Σ P rM je súčet menovitých činných výkonov uvažovaných motorov vn a nn, Σ S rT – súčet menovitých zdanlivých výkonov všetkých transformátorov, cez ktoré sú napájané motory, I ′′ kQ– začiatočný súmerný rázový skratový prúd v bode pripojenia napájača Q bez príspevkov motorov, U nQ – menovité napätie sústavy v bode pripojenia Q napájača. KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Výpočet skratových prúdov V prípade vzdialeného skratu sa skratový prúd počíta ako súčet : striedavej zložky s konštantnou amplitúdou počas trvania skratu, jednosmernej zložky začínajúcej na hodnote A a klesajúcej k nule . Prúdy I "k , Ib, Ik sú efektívne hodnoty súmerných striedavých prúdov a majú takmer rovnakú veľkosť. V prípade blízkeho skratu je skratový prúd uvažovaný ako súčet zložiek: striedavej , zmenšujúcej sa amplitúdou počas skratu, jednosmernej, začínajúcej na hodnote A a klesajúcej smerom k nule. KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Pri výpočtoch skratov počítame: I "k - začiatočný rázový skratový prúd Ib, - súmerný vypínací skratový prúd Ik - ustálený skratový prúd ip - nárazový skratový prúd Ith - ekvivalentný otepľovací skratový prúd KVES Elektrotechnická fakulta ŽU
Začiatočný súmerný rázový skratový prúd " Trojfázový skrat Obecne začiatočný súmerný rázový skratový prúd počítame podľa vzťahu: Dvojfázový skrat V prípade dvojfázového skratu, sa začiatočný rázový skratový prúd počíta podľa vzťahu: KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Dvojfázový zemný skrat KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Počiatočný rázový skratový prúd, ktorý prechádza zemou Pri vzdialenom skrate KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Jednofázový skrat KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Nárazový skratový prúd Trojfázový skrat KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Príspevok nárazového skratového prúdu z každej vetvy Dvojfázový skrat Pri dvojfázovom skrate sa nárazový skratový prúd ip(2) sa vypočíta: KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Dvojfázový zemný skrat Pri dvojfázovom zemnom skrate sa nárazový skratový prúd ip2E sa vypočíta: Jednofázový skrat Pri jednofázovom skrate sa nárazový skratový prúd ip1 sa vypočíta: KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Jednosmerná zložka skratového prúdu iDC Maximálna jednosmerná zložka skratového prúdu i DC sa určí podľa vzťahu: Súmerný vypínací skratový prúd Vypínací skratový prúd v mieste skratu sa skladá zo symetrického vypínacieho skratového prúdu Ib a jednosmernej zložky skratového prúdu iDC v čase tmin , ktorú určíme podľa KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Pri vzdialených skratoch sú symetrické vypínacie skratové prúdy rovné počiatočným rázovým skratovým prúdom : V prípade blízkych skratov, pri vzniku trojfázového skratu v jednoduchej sieti sa zmenšovanie súmerného skratového vypínacieho prúdu zohľadňuje pomocou súčiniteľa μ : KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Ustálený skratový prúd Výpočet ustáleného skratového prúdu Ik pre vzdialené trojfázové skraty napájané z jedného synchrónneho generátora alebo z jedného elektrárenského bloku, závisí na systéme budenia napájaného zo svoriek generátorov, napäťovej regulácii a vplyve nasýtenia. Pre sústavy so statickým budením, napájaných zo svoriek generátorov, dochádza pri skratoch na svorkách generátora k zrúteniu svorkového i budiaceho napätia. V tomto prípade λ max = λ min = 0. λ max získame ako funkciu pomeru I ′′ kG / I rG zvlášť pre synchrónny generátor s hladkým rotorom a samostatne pre synchrónny generátor s vyjadrenými pólmi) KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Minimálny ustálený skratový prúd KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Skrat na svorkách asynchrónnych motorov V prípade trojfázových a dvojfázových skratov na svorkách asynchrónnych motorov sú príspevky skratových prúdov udané v tab. KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Ekvivalentný otepľovací skratový prúd Integrál ∫ i 2 dt vyjadruje energiu získanú prechodom skratového prúdu na rezistancii vyšetrovanej siete. Pre výpočet otepľovacieho skratového prúdu podľa STN EN 60909-0 sa používajú súčinitele: m – pre časovo závislý tepelný účinok jednosmernej zložky skratového prúdu, n – pre časovo závislý tepelný účinok striedavej zložky skratového prúdu, KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Ekvivalentný otepľovací skratový prúd Pre i = 1,2, ...,r po sebe nasledujúcich jednotlivých skratových prúdov, pre výpočet integrálu a ekvivalentného otepľovacieho skratového prúdu použijeme vzťahy KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Účinky skratových prúdov môžeme posudzovať z hľadiska: priamych účinkov – ich vplyv sa prejavuje prostredníctvom dynamických síl, tepelných účinkov a účinkov elektrického oblúka, nepriamych účinkov – skratové prúdy pôsobia na elektrické zariadenia nachádzajúce sa mimo miesta skratu. Prejavujú sa obvykle zníženým napätím, vplývajú na stabilitu chodu ES, indukčnými účinkami pôsobia najmä na slaboprúdové zariadenia. ktorého namáhanie skratovými prúdmi na zariadenia nemá vplyv, čo môžu byť prípady elektricky vzdialených skratov prejavujúcich sa veľkou impedanciou ako sú napr. elektrické inštalácie v budovách. KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Predchádzanie vzniku skratu Obmedzenie veľkosti skratových prúdov Zväčšením impedancie skratového obvodu, ktoré môžeme docieliť : KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Použitím obmedzovacích tlmiviek KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Obmedzenie účinkov skratových prúdov Účinky skratových prúdov na elektrické zariadenia a na elektrizačnú sústavu môžeme rozdeliť na : priame, ktoré sa prejavujú priamo na elektrických zariadeniach, nepriame, ktorých účinok sa prejaví až pôsobením ďalšieho javu, ktorý je vyvolaný skratom. K priamym účinkom patria silové(dynamické účinky) pôsobiace najmä na tuhé ohybné vodiče a tepelné účinky. KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Silové účinky Dynamické sily vznikajúce prechodom prúdov pôsobia na paralelné vodiče a vyvolávajú namáhania, s ktorými musíme uvažovať najmä pri návrhu elektrických staníc. Predpokladajme dva rovnobežné vodiče podľa KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU U tuhých vodičov namáhanie na ohyb je dané vzťahom: M0 je ohybový moment, F – sila pôsobiaca na vodiče, l – vzdialenosť podpier, W – modul prierezu, ip – nárazový skratový prúd, D – vzdialenosť medzi fázami. KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Tepelné účinky Pri blízkom skrate k otepleniu prispievajú všetky zložky skratového prúdu. Vplyv doznievajúcich zložiek je tým väčší, čím je kratší čas trvania skratu. Pri výpočte tepelného namáhania sa predpokladá, že všetko uvolnené teplo sa nahromadí vo vodičoch a teda sa prejaví sa len ohriatím vodičov. Je to zdôvodnené tým, že za tak krátky čas trvania skratu nie je možné všetko uvolnené teplo odviesť. Pri vzdialenom skrate v podstate nie je rozdiel medzi začiatočnou a ustálenou hodnotou skratového prúdu. KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU kde ρ je rezistivita vodiča, l – dĺžka vodiča, S – prierez vodiča, α – koeficient tepelnej rozťažnosti, ϑ 0 ϑ 1 – začiatočná, konečná teplota Iku – ustálený skratový prúd. KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Predpokladáme, že žiadne teplo sa neodvedie ani nevyžiari, zvýši sa však teplota vodiča. Celkové množstvo tepla bude KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Zemné spojenia v elektrických sieťach Podľa zapojenia uzla transformátora, elektrická sieť môže byť prevádzkovaná niekoľkými spôsobmi a to: s priamo uzemneným uzlom (uzemňovacia impedancia ZN = 0) – napäťová hladina nn, s priamo uzemneným uzlom (uzemňovacia impedancia ZN = 0) – napäťové hladiny vvn, zvn, uvn, s izolovaným uzlom (uzemňovacia impedancia ZN=∞), kompenzovaná sieť s kompenzačnou tlmivkou (ZN≈j XL), s rezistorom (ZN = R) – napäťová hladina vn. KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Pre ustálený stav platí KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Zemné spojenie v izolovanej sieti KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Z náhradnej schémy dostaneme Pre zložkové napätia Prúdy v jednotlivých fázach sú KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Poruchový prúd bude Fázové napätia budú KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU Pre fázor napätia Un KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU
KVES Elektrotechnická fakulta ŽU