CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Nghiên cứu chế tạo thiết bị thử nghiệm đánh giá tình trạng
Advertisements

Điện tử cho CNTT Electronic for IT Trần Tuấn Vinh
Tiết 41: SỰ PHÁT SINH LOÀI NGƯỜI
BÀI GIẢNG ĐIỆN TỬ Bài 9: SÓNG DỪNG (Vật Lý 12 cơ bản) Tiết 16
Chương 5: Vận chuyển xuyên hầm
DLC Việt Nam có trên 30 sản phẩm
LÝ THUYẾT XÁC SUẤT 45 tiết=15 buổi=6 chương
Sự nóng lên và lạnh đi của không khí Biến thiên nhiệt độ không khí
CO GIẬT Ở TRẺ SƠ SINH TS. Phạm Thị Xuân Tú.
Chiến lược toàn cầu xử trí hen phế quản GINA 2015
NHẬP MÔN KINH TẾ LƯỢNG (ECONOMETRICS)
Trao đổi trực tuyến tại:
CHƯƠNG 4: CÁC LOẠI BẢO VỆ 4.1 Bảo vệ quá dòng Nguyên tắc hoạt động 4.2 Bảo vệ dòng điện cực đại (51) Nguyên tắc hoạt động Thời gian làm.
VIÊM HỆ THỐNG XOANG TRƯỚC: GIẢI PHẪU LÂM SÀNG, CẬN LÂM SÀNG, CHẨN ĐOÁN VÀ HƯỚNG XỬ TRÍ CHUYÊN ĐỀ MŨI XOANG BS.LÊ THANH TÙNG.
1. Lý thuyết cơ bản về ánh sáng
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG
Two Theories of Bonding
New Model Mobi Home TB120.
CHƯƠNG VII PHƯƠNG SAI THAY ĐỔI
virut vµ bÖnh truyÒn nhiÔm
Chương1.PHỔ HỒNG NGOẠI Infrared (IR) spectroscopy
HỆ THỐNG THU THẬP DỮ LIỆU ĐO LƯỜNG

TRƯỜNG ĐẠI HỌC BÁCH KHOA TP.HCM
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN BỘ MÔN VẬT LÝ ỨNG DỤNG
MA TRẬN VÀ HỆ PHƯƠNG TRÌNH ĐẠI SỐ TUYẾN TÍNH
Chương IV. Tuần hoàn nước trong tự nhiên
NGHIÊN CỨU HÌNH THÁI , CẤU TRÚC GAN , ĐƯỜNG KÍNH VÀ PHỔ DOPPLER TĨNH MẠCH CỬA QUA SIÊU ÂM Ở BỆNH NHÂN XƠ GAN (ĐỀ CƯƠNG CKII NỘI TIÊU HÓA)
CHƯƠNG 3 HỒI QUY ĐA BIẾN.
2.1. Phân tích tương quan 2.2. Phân tích hồi qui
Chương 2 MÔ HÌNH HỒI QUY HAI BIẾN.
Giảng viên: Lương Hồng Quang
ĐỊNH THỨC VÀ HỆ PHƯƠNG TRÌNH ĐẠI SỐ TUYẾN TÍNH
PHÂN TÍCH DỰ ÁN Biên soạn: Nguyễn Quốc Ấn
Welcome.
CÁC YẾU TỐ MÔI TRƯỜNG TỰ NHIÊN ẢNH HƯỞNG ĐẾN SẢN XUẤT CÂY TRỒNG
Chöông 8 KEÁ TOAÙN TAØI SAÛN COÁ ÑÒNH
(Vietnam Astrophysics Training Laboratory −VATLY)
KHÁNG THỂ GLOBULIN MIỄN DỊCH Ths. Đỗ Minh Quang
ĐIỀU TRA CHỌN MẪU TRONG THỐNG KÊ
GV giảng dạy: Huỳnh Thái Hoàng Nhóm 4: Bùi Trung Hiếu
Trường THPT QUANG TRUNG
ROBOT CÔNG NGHIỆP Bộ môn Máy & Tự động hóa.
Trường THPT Quang Trung Tổ Lý
CHƯƠNG 4 DẠNG HÀM.
ĐỊA CHẤT CẤU TẠO VÀ ĐO VẼ BẢN ĐỒ ĐỊA CHẤT
CHẨN ĐOÁN, ĐiỀU TRỊ VÀ DỰ PHÒNG MERS CoV
XPS GVHD: TS Lê Vũ Tuấn Hùng Học viên thực hiện: - Lý Ngọc Thủy Tiên
NÔNG NGHIỆP-TÀI NGUYÊN THIÊN NHIÊN Công nghệ emzyme thực phẩm
KHo¶ng c¸ch.
ĐỀ TÀI : MÁY ÉP CỌC BÊ TÔNG CỐT THÉP
Tiết 3-Bài 3: Dụng cụ dùng trong lắp đặt mạng điện
MÔN HOÁ 11 CHƯƠNG 4: ĐẠI CƯƠNG VỀ HOÁ HỮU CƠ
Xác suất Thống kê Lý thuyết Xác suất: xác suất, biến ngẫu nhiên (1 chiều, 2 chiều); luật phân phối xác suất thường gặp Thống kê Cơ bản: lý thuyết mẫu,
Thực hiện: Bùi Thị Lan Hướng dẫn: Ths. Ngô Thị Thanh Hải
Giáo viên: Lâm Thị Ngọc Châu
BÀI TẬP ĐỊA LÍ TỰ NHIÊN (CÁC DẠNG BÀI TẬP VỀ VẬN ĐỘNG CỦA TRÁI ĐẤT)
CƯỜNG GIÁP TRƯỜNG ĐẠI HỌC DUY TÂN KHOA DƯỢC
ĐẠI HỌC HÀNG HẢI VIỆT NAM
Những vấn đề kinh tế cơ bản trong sản xuất nông nghiệp
THIẾT KẾ VÀ ĐÁNH GIÁ THUẬT TOÁN
LINH KIỆN ĐIỆN TỬ NANO SEMINAR GVHD: PGS.TS.TRƯƠNG KIM HIẾU
1 BỆNH HỌC TUYẾN GIÁP Ths.BS Hoàng Đức Trình.
CHƯƠNG 4: CÁC KHÍ CỤ ĐIỆN ĐO LƯỜNG
Công nghệ sản xuất Nitrobenzen và Anilin
CƠ HỌC LÝ THUYẾT 1 TRƯỜNG ĐẠI HỌC KĨ THUẬT CÔNG NGHIỆP THÁI NGUYÊN
Chương 2: SÓNG CƠ VÀ SÓNG ÂM SÓNG CƠ VÀ SỰ TRUYỀN SÓNG CƠ
ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN
BỆNH LÝ VỎ THƯỢNG THẬN GVHD : ThS. BS. Nguyễn Phúc Học
Μεταγράφημα παρουσίασης:

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC Mục Tiêu: 1- Trình bày được nội dung NL I NĐLH, ý nghĩa hàm trạng thái U và H 2- Sử dụng được những định luật của nhiệt hoá học để tính toán hiệu ứng nhiệt 3- Trình bày được nội dung và giải thích biểu thức NL II NĐLH 4- Trình bày đuợc ý nghĩa các hàm trạng thái S và năng lượng tự do trong nghiên cứu

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC Nhiệt động lực học là khoa học nghiên cứu các quy luật điều khiển sự biến đổi năng lượng, đặc biệt là sự biến đổi nhiệt năng thành các dạng năng lượng khác. Nhiệt động lực học hoá học là khoa học suy diễn vì nội dung chủ yếu của nó dựa vào chủ yếu ba nguyên lý của nhiệt động lực học, ba trong bốn nguyên lý này có được từ sự khái quát hoá kinh nghiệm và hoạt động của con người trong nhiều thế kỷ. Nhiệt động lực học hoá học cho phép tính năng lượng trao đổi trong quá trình phản ứng, dựa vào các thông số nhiệt động có thể tiên đoán được chiều hướng các phản ứng, giới hạn tự diễn biến, trong điều kiện nào phản ứng tự xảy ra và hiệu suất phản ứng.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.1. Khái niệm chung 4.1.1 Hệ Hệ là một hay nhiều vật thể thuộc vũ trụ được chọn nghiên cứu, được ngăn cách với môi trường ngoài (phần còn lại của vũ trụ) bằng ranh giới thực hoặc tưởng tượng. Nhường nhiệt Q < 0 Trạng thái đầu Trạng thái cuối Hệ nhận công W > 0 Hệ tạo công W < 0 h V2 , T2 Nhận nhiệt Q > 0 V1 , T1 S

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.1. Khái niệm chung 4.1.1.1 Hệ cô lập Hệ không trao đổi chất, không trao đổi năng lượng dưới dạng nhiệt và công với môi trường. Hệ có thể tích không thay đổi. 4.1.1.2 Hệ kín Hệ không trao đổi chất, có thể trao đổi năng lượng dưới dạng nhiệt và công với môi trường. Hệ có thể tích thay đổi. Hệ phản ứng trong bình kín. 4.1.1.3 Hệ đoạn nhiệt Hệ không trao đổi chất và nhiệt, có thể trao đổi công với môi trường.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.1.1.4 Hệ hở Hệ có thể trao đổi chất và năng lượng với môi trường. I2 + Zn ZnI2

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.1.2 Trạng thái 4.1.2.1 Thông số trạng thái, biến số trạng thái Các đại lượng vật lý như nhiệt độ, thể tích, áp suất, khối lượng riêng, ... Là các thông số trạng thái của hệ. Thông số trạng thái dung độ, tỉ lệ với khối lượng. Ví dụ thể tích, khối lượng. Thông số trạng thái cường độ thì ngược lại. Ví dụ nhiệt độ, áp suất, nồng độ. 4.1.2.2 Trạng thái (chú ý: khác trạng thái tập hợp chất: khí, lỏng, rắn) Trạng thái của một hệ được xác định bởi tập hợp các giá trị của thông số trạng thái. Trạng thái của hệ sẽ thay đổi nếu một trong những thông số trạng thái thay đổi. Ví dụ thanh Fe 10 cm3, ở 30 0C, 1atm. Khi nung đến 120 0C thì Fe vẫn rắn.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.1.2 Trạng thái 4.1.2.3 Hàm trạng thái Một đại lượng F (P,V,T) được gọi là hàm số trạng thái của hệ nếu biến thiên của đại lượng đó chỉ phụ thuộc vào trạng thái đầu F1 (P1, V1, T1) và cuối F2 (P2, V2, T2) của hệ mà không phụ thuộc vào cách tiến hành thuận nghịch hay bất thuận nghịch. Ví dụ U, PV, H, S, P, V, T. vi phân dU, d(PV), dP, dV, dT là những vi phân toàn phần. ∂F ∂F dF = dx + dy ∂x ∂y 2 ∫ dF(x,y) = F2(x2, y2) - F1(x1, y1) 1

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.1.2.3 Hàm trạng thái d ∂F d ∂F = dy ∂x dx ∂y y x dF(x,y) = F’(x,y)y dx Ví dụ: cho hàm F(x,y) = 2x3y2 + y5 ∂F = 6x2y2 ∂x y ∂F = 4x3y + 5y4 ∂y x

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.1.2 Trạng thái 4.1.2.4 Hàm không phải là hàm trạng thái Công cơ học W không phải là hàm trạng thái vì giá trị của W phụ thuộc cách biến đổi thuận nghịch (hệ chuyển từ TTCB này sang TTCB khác vô cùng chậm qua liên tiếp các trạng thái cân bằng, sự khác giá trị thông số trạng thái là vô cùng nhỏ) hoặc không thuận nghịch (biến đổi không thuận nghịch là quá trình không cân bằng, tự xảy ra). Wtn ≠ Wktn

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.1.2.4 Hàm không phải là hàm trạng thái Trạng thái đầu Trạng thái cuối Khi hệ giãn nở một đoạn vô cùng nhỏ dl, hệ sinh công dl dv w = - F x dl V1 , T1 w = - Png x S x dl S w = - Png x dv Công = lực x quãng đường di chuyển Áp suất = áp lực tác dụng trên một đơn vị diện tích

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.1.2.4 Hàm không phải là hàm trạng thái Khi hệ biến đổi hữu hạn từ trạng thái 1 sang 2. Hệ biến đổi không thuận nghịch (Png ≠ Pkh) v2 ∫ ∫ W = Σ w = w = - Png x dv W = - Pkq (V2 - V1) v1 Hệ biến đổi thuận nghịch (Png = Pkh), nếu khí trong cylinder là khí lí tưởng v2 ∫ Png = Pklt = (nRT)/V W = - Png dv v1 v2 v2 ∫ dv Wtn = - nRT Wtn = - nRT ln v v1 v1

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.1.2.4 Hàm không phải là hàm trạng thái Wtn > Wktn Khi hệ ở trạng thái 1, áp suất khí trong cylinder bằng với áp suất pistol và các vật trên pistol. Nếu lấy bớt vật vô cùng nhỏ, thể tích tăng và áp suất giảm. Hệ sinh công do khí giãn nở. P1 - Pi ΔV Pi Nếu nén khí từ trạng thái 2 về trạng thái 1 bằng cách thêm các vật vô cùng nhỏ, thì hai đường bậc thang sẽ tiến dần đến đường Hypecpol. Quá trình biến đổi thuận nghịch Wmax. P2 V1 Vi V V2

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.2 Nguyên lý thứ nhất nhiệt động lực học, nội năng U, enthalpy H. 4.2.1 Nguyên lý I Sự biến đổi nội năng của hệ bằng tổng tất cả các dạng năng lượng mà hệ trao đổi với môi trường. ΔU = Q + W Q : nhiệt W : công Đối với biến đổi vô cùng nhỏ. dU = Q +  W

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.2 Nguyên lý thứ nhất nhiệt động lực học, nội năng U, enthalpy H. 4.2.1 Nguyên lý I ∂U ∂U Khí lý tưởng, U chỉ phụ thuộc nhiệt độ. = 0 = 0 dU = Q +  W ∂V ∂P T T Đối với chu trình ΔU = 0, W = - Q nhiệt hệ nhận chuyển hết thành công, không thể chế tạo được động cơ vĩnh cửu loại I, cái mà sinh công liên tục không cần tiếp thu năng lượng từ bên ngoài. Đối với hệ cô lập W = Q = 0, ΔU = 0 hay U2 = U1 nội năng hệ cô lập được bảo toàn. Đối với quá trình mở ΔU = const., biến thiên nội năng không phụ thuộc cách tiến hành, chỉ phụ thuộc trạng thái đầu và cuối.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.2 Nguyên lý thứ nhất nhiệt động lực học, nội năng U, enthalpy H. 4.2.2 Enthalpy H Nhiệt đẳng tích Qv dU = Q +  W W = - P dV = 0 (vì V = const) dU = Q ΔU = Qv

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.2 Nguyên lý thứ nhất nhiệt động lực học, nội năng U, enthalpy H. 4.2.2 Enthalpy H Nhiệt đẳng áp Qp dU = Q +  W Qp = ΔU + P ΔV W = - P dV Qp = (U2 – U1) + P (V2 – V1) dU = Q - P dV Qp = (U2 + PV2) - (U1 + PV1) Qp = ΔH (với H = U + PV) ΔU = Qp – P ΔV

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.2 Nguyên lý thứ nhất nhiệt động lực học, nội năng U, enthalpy H. 4.2.3 Liên hệ nhiệt đẳng áp và nhiệt đẳng tích của khí lý tưởng, P = const, V = const ΔH = Δ(U + PV)p = ΔU + PΔV Qp = Qv + ΔnRT Δn = số mol sản phẩm khí - số mol khí tham gia phản ứng

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC Dây đốt Nhiệt kế Máy khuấy Vỏ thép Vỏ ngoài cách nhiệt Bomb bằng thép Chén sứ chứa mẫu

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC Tính nhiệt cháy của octane theo phương trình, khi đốt 1 gram octane tạo ra sự tăng nhiệt độ từ 25 đến 33,20 0C, nhiệt lượng kế chứa 1200 grams nước, nhiệt dung của bomb là 837 J/K. C8H18 (g) + 25/2 O2 8 CO2 + 9 H2O Tính nhiệt trao đổi giữa phản ứng với nước Q = (4,184 J/gK).(1200g).(8,20K) = 41170 J Tính nhiệt trao đổi giữa phản ứng với bomb Q = (837 J/K).(8,20K) = 6863 J Q = 48033 J nhiệt đốt cháy 1 gram là -48 kJ

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC Tính nhiệt lượng thoát ra khi làm nguội miếng nhôm nặng 25 grams từ 310 0C đến 37 0C, nhiệt dung riêng của nhôm là 0,902 J/g.K. Q = (0,902 J/gK).(25g).(273K) = - 6156 J James Joule (1818 – 1889)

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.2 Nguyên lý thứ nhất nhiệt động lực học, nội năng U, enthalpy H. 4.2.4 Nhiệt dung Nhiệt dung là lượng nhiệt cần thiết để nâng nhiệt độ của hệ lên một độ. Nhiệt dung riêng là lượng nhiệt cần thiết để nâng nhiệt độ của 1 gram chất lên một độ. Nhiệt dung mol đẳng tích là lượng nhiệt cần thiết để nâng nhiệt độ của 1 mol chất lên một độ ở điều kiện thể tích không đổi. Nhiệt dung mol đẳng áp là lượng nhiệt cần thiết để nâng nhiệt độ của 1 mol chất lên một độ ở điều kiện áp suất không đổi.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.2 Nguyên lý thứ nhất nhiệt động lực học, nội năng U, enthalpy H. 4.2.4 Nhiệt dung ∂U ∂H Cv = Cp = ∂T ∂T v p Biết nhiệt dung mol đẳng tích và đẳng áp có thể tính được biến đổi nội năng và biến đổi enthalpy theo nhiệt độ. T2 T2 ∫ ∫ Qv = ΔU = Cv dT Qp = ΔH = Cp dT T1 T1

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.2 Nguyên lý thứ nhất nhiệt động lực học, nội năng U, enthalpy H. 4.2.4 Nhiệt dung Cv và Cp là hàm số của nhiệt độ thường được biểu diễn bằng biểu thức C = ao + a1T + a2T-2 = Σ anTn ao, a1, a2 là những hằng số đặc trưng đối với một chất nguyên chất trong khoảng nhiệt độ khảo sát.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.2 Nguyên lý thứ nhất nhiệt động lực học, nội năng U, enthalpy H. 4.2.5 Định luật Kirchhoff T2 ∫ ΔH0(T2) = ΔH0(T1) + ΔCpdT T1 Nếu ΔCp không phụ thuộc nhiệt độ T ΔH0(T2) = ΔH0(T1) + ΔCp(T2 – T1)

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC Đơn vị năng lượng. Động năng = ½ mv2 Joule (J) năng lượng cần để chuyển 2 kg chất đạt vận tốc 1 m/s. J = ½ (2 kg)(1 m/s)2 = 1 kg m2s -2 Calorie (cal) lượng nhiệt cần đun một gam nước từ 15 độ tới 16 độ . 1 cal = 4,184 J

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC Bài tập 1. Tính ΔH0 của phản ứng ở 500 K 2 H2 (k) + CO (k) CH3OH (k) Biết sinh nhiệt mol chuẩn của CO (k), CH3OH (k) lần lượt là - 26,41, - 48,08 Kcal/mol (Cp)H2 (k) = 6,52 + 0,78.10-3T + 0,12.105T-2 cal/mol.K (Cp)CO (k) = 6,79 + 0,98.10-3T - 0,11.105T-2 cal/mol.K (Cp)CH3OH (k) = 3,65 + 25,14.10-3T - 0,74.105T-2 cal/mol.K

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC Bài tập 2. Tính ΔH0 của phản ứng ở 1100 K và 1200 K CaCO3 (r) CaO (r) + CO2 (k) Biết sinh nhiệt mol chuẩn của CaO (r), CaCO3 (r), CO2 (k) lần lượt là - 635,09, - 1206,87, - 393,51 kJ/mol (Cp)CaO (r) = 48,83 + 4,52.10-3T + 6,53.105T-2 J/mol.K (Cp)CaCO3 (r) = 104,52 + 21,92.10-3T - 25,94.105T-2 J/mol.K (Cp)CO2 (k) = 28,66 + 35,7.10-3T J/mol.K

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Định luật Hess và hệ quả. Quá trình tự diễn biến Quá trình không tự diễn biến

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Định luật Hess và hệ quả. Sản phẩm Chất tham gia phản ứng Năng lượng Năng lượng Sản phẩm Chất tham gia phản ứng Phản ứng toả nhiệt, năng lượng dư được giải phóng, sản phẩm bền hơn Phản ứng thu nhiệt, cần cung cấp thêm năng lượng, sản phẩm kém bền hơn

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Định luật Hess và hệ quả. “Nếu có nhiều cách chuyển các chất ban đầu như nhau thành các sản phẩm cuối giống nhau, thì hiệu ứng nhiệt tổng cộng theo cách nào đi nữa cũng đều bằng nhau”. Hiệu ứng nhiệt của phản ứng chỉ phụ thuộc vào trạng thái đầu và trạng thái cuối, không phụ thuộc các giai đoạn trung gian. Hiệu ứng nhiệt ở đây là ở áp suất không đổi và quá trình phản ứng không thuận nghịch ΔH A + B C + D ΔH1 ΔH3 ΔH = ΔH1 + ΔH2 + ΔH3 ΔH2 E + F G + H

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Định luật Hess và hệ quả. Ví dụ 1: tính nhiệt phản ứng của ΔH0298K = ? 2 C(gr) + O2 (k) 2 CO (k) Biết C(gr) + O2 (k) CO2 (k) ΔH0298K = - 393,5 kJ 2 CO (k) + O2 (k) 2 CO2 (k) ΔH0298K = - 566 kJ

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Định luật Hess và hệ quả. Cách 1: tạo chu trình ΔH0298K = ? 2 C(gr) + O2 (k) 2 CO (k) - (- 566 kJ) + 2O2 (k) 2(- 393,5 kJ) + O2 (k) 2 CO2 (k) ΔH0298K = - 221 kJ

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Định luật Hess và hệ quả. Cách 2: phương pháp đại số ΔH0298K = ? 2 C(gr) + O2 (k) 2 CO (k) Viết lại 2 C(gr) + 2 O2 (k) 2 CO2 (k) ΔH0298K =2 (- 393,5 kJ) 2 CO2 (k) 2 CO (k) + O2 (k) ΔH0298K = - (- 566 kJ) ΔH0298K = - 221 kJ

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Định luật Hess và hệ quả. Ví dụ 2: tính nhiệt phản ứng của C(r)than chì C(r)kimcương ΔH = ? Biết C(r)tc + O2 (k) CO2 (k) ΔH1 = - 393,51 kJ C (r)kc + O2 (k) CO2 (k) ΔH2 = - 395,41 kJ

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Định luật Hess và hệ quả. ΔH1 = -393,51 kJ C(r)tc CO2 (k) + O2 (k) ΔH2 = -395,41 kJ ΔH = ? kJ + O2 (k) C (r)kc ΔH = + 1,9 kJ

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC Hệ quả 1:Hiệu ứng nhiệt phản ứng thuận = - Hiệu ứng nhiệt phản ứng nghịch Hệ quả 2:Hiệu ứng nhiệt phản ứng = tổng nhiệt sinh các sản phẩm – tổng nhiệt sinh các chất đầu phản ứng ΔH0298 = ΣΔHf (product) - ΣΔHf (starting material) Hệ quả 3:Hiệu ứng nhiệt phản ứng = tổng nhiệt cháy các chất đầu phản ứng – tổng nhiệt cháy các sản phẩm ΔH0298 = ΣΔHc (starting material) - ΣΔHc (product) Hệ quả 4:Hiệu ứng nhiệt phản ứng = tổng năng lượng liên kết các chất đầu phản ứng – tổng năng lượng liên kết các sản phẩm ΔH0298 = ΣEb (starting material) - ΣEb (product)

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Định luật Hess và hệ quả. ΔH0298K = ? H2(k) + Cl2 (k) 2 HCl (k) H-H (k) + Cl-Cl (k) 2 H-Cl (k) ΔH0298K = 1 mol EH-H + 1 mol ECl-Cl - 2 mol EH-Cl ΔH0298K = 1 mol (436) + 1 mol (244) - 2 mol (432) ΔH0298K = - 184 kJ

TRẠNG THÁI TẬP HỢP CHẤT Chu trình Born - Haber ΔHA Cl (k) Cl - (k) ΔHI Na (k) Na+ (r) ΔHS = +107,6 kJ/mol ΔHI = +495,8 kJ/mol - Uo ΔHS 1/2ΔHD 1/2ΔHD = +120,0 kJ/mol ΔHF Na (r) + 1/2 Cl2 (k) NaCl (r) ΔHA = -348,8 kJ/mol ΔHF = -410,7 kJ/mol ΔHF = ΔHS + ΔHI + 1/2ΔHD + ΔHA + (- Uo)

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Nguyên lý thứ hai nhiệt động lực học, entropy S. Nguyên lý I cho phép tính nhiệt của các phản ứng nhưng không cho phép tiên đoán chiều và giới hạn của quá trình. Hai yếu tố enthalpy H và entropy S được dùng để xác định chiều diễn biến của phản ứng. P P/2 P/2 ΔS > 0 Khí lý tưởng có thể tự động giãn nở sang một bình chân không, quá trình này không làm giảm nội năng của hệ, vì U của khí lý tưởng chỉ phụ thuộc nhiệt độ.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Nguyên lý thứ hai nhiệt động lực học, entropy S. Entropy đại lượng đo lường độ mất trật tự (hỗn độn) hoặc xác suất nhiệt động học của hệ. rắn lỏng khí ΔS < ΔS < ΔS

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Nguyên lý thứ hai nhiệt động lực học, entropy S. Xét hệ gồm các phân tử nước ở nhiệt độ phòng, nếu ta đốt nóng hệ thì các phân tử nước sẽ gia tăng chuyển động, gây mất trật tự (độ tự do), nếu nhiệt lượng q cung cấp cho hệ tăng lên thì sự mất trật tự sẽ tăng tỉ lệ thuận. Tuy nhiên, nếu cùng nhiệt lượng q cung cấp cho hệ đang ở nhiệt độ cao hơn thì sự biến thiên mất trật tự sẽ ít hơn so với lúc hệ đang ở nhiệt độ thấp. Hàm trạng thái đo mức độ mất trật tự (độ tự do) của hệ được ký hiệu là S (đọc là entropy) Qtn dS = T

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Nguyên lý thứ hai nhiệt động lực học, entropy S. Ở nhiệt độ không đổi, với một biến đổi thuận nghịch xác định Qtn ΔS = T Khi nhiệt độ thay đổi 2 Qtn ∫ ΔS = T 1

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Nguyên lý thứ hai nhiệt động lực học, entropy S. Xét hệ biến đổi từ trạng thái (1) sang (2) theo hai đường biến đổi tn và ktn. dU = Qtn +  Wtn = Qktn +  Wktn  Wtn -  Wktn = Qktn -  Qtn Lý do  Wtn <  Wktn Nên  Qktn <  Qtn 2 Qktn Qktn ∫ ΔS > ΔS > T T 1

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Nguyên lý thứ hai nhiệt động lực học, entropy S. 4.3.1 Nguyên lý II nhiệt động lực học “Trong quá trình biến đổi của hệ, biến thiên entropy của hệ chỉ tuỳ thuộc vào trạng thái đầu và cuối và luôn lớn hơn hay bằng nhiệt lượng trao đổi của hệ chia cho nhiệt độ tuyệt đối”. 2 Q Q ∫ dS ≥ ΔS ≥ T T 1 Dấu = đối với quá trình thuận nghịch (cân bằng). Dấu > đối với quá trình không thuận nghịch (tự xảy ra).

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Nguyên lý thứ hai nhiệt động lực học, entropy S. Entropy đại lượng đo lường độ mất trật tự (hỗn độn) hoặc xác suất nhiệt động học của hệ. rắn lỏng khí S = K .LnW ΔS < ΔS < ΔS K = 1,38066 .10-23 J/K

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Nguyên lý thứ hai nhiệt động lực học, entropy S. 4.3.2 Ý nghĩa thống kê của entropy Ở phần cấu tạo chất đã cho thấy ứng với mỗi trạng thái vĩ mô của hệ sẽ có một số rất lớn các trạng thái vi mô không thể phân biệt được ở quy mô vĩ mô. “Số trạng thái vi mô ứng với một trạng thái vĩ mô (ký hiệu W) được gọi là xác suất nhiệt động của hệ”. S = K .LnW Entropy là độ đo mức độ mất trật tự của hệ. Một hệ cô lập có khuynh hướng tự diễn biến đến trạng thái có xác suất nhiệt động lớn nhất, nghĩa là trạng thái vĩ mô tuơng ứng với số trạng thái vi mô lớn nhất.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3 Nguyên lý thứ hai nhiệt động lực học, entropy S. 4.3.3 Cách tính biến đổi entropy Hàm số trạng thái entropy S phụ thuộc vào các biến số T, V hay P. S = S(T,V) hay S = S(T,P) 4.3.3.1 S = S(T,V) Qtn dU - Wtn dS = = T T Với khí lý tưởng dU = nCvdT Wtn = - PdV = - nRTdV/V

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.1 S = S(T,V) dT dV dS = nCv + nR T V Với biến đổi đẳng nhiệt (dT = 0) dV dS = nR V Lấy tích phân từ V1 đến V2 V2 ΔST = nRLn V1

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.1 S = S(T,V) dT dV dS = nCv + nR T V Với biến đổi đẳng tích (dV = 0) dT dS = nCv T T2 Lấy tích phân từ T1 đến T2 T2 ∫ dT Cv không đổi từ T1 đến T2 ΔSV = nCv ΔSV = nCvLn T T1 T1

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.2 S = S(T,P) Qtn dU - Wtn dU - (-PdV) dS = = = T T T dU + PdV + VdP - VdP = T dU + d(PV) - VdP d(U + PV) - VdP dH - VdP = = = T T T

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.2 S = S(T,P) Qtn dH - VdP dS = = T T Với khí lý tưởng dH = nCp dT V = nRT/P dT dP dS = nCp - nR T P

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.2 S = S(T,P) dT dP dS = nCp - nR T P Với biến đổi đẳng nhiệt (dT = 0) dP dS = - nR P Lấy tích phân từ P1 đến P2 P2 ΔST = - nRLn P1

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.2 S = S(T,P) dT dP dS = nCp - nR T P Với biến đổi đẳng áp (dP = 0) dT dS = nCp T T2 Lấy tích phân từ T1 đến T2 T2 ∫ dT Cp không đổi từ T1 đến T2 ΔSP = nCp ΔSP = nCpLn T T1 T1

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.3 Biến đổi của biến đổi entropy theo nhiệt độ Biết ΔS (T0) ở nhiệt độ T0, tính ΔS (T) ở nhiệt độ T của một phản ứng m A + n B p C + q D ΔS = pSC + qSD - mSA - nSB ∂ΔS ∂SC ∂SD ∂SA ∂SB = p + q - m - n ∂T ∂T ∂T ∂T ∂T p p p p p

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.3 Biến đổi của biến đổi entropy theo nhiệt độ Với biến đổi đẳng áp (dP = 0) Cp dT ∂S dS = Cp = T ∂T T p ΔCp ∂ΔS CpC CpD CpA CpB = p + q - m - n = ∂T T T T T T p p p p p

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.3 Biến đổi của biến đổi entropy theo nhiệt độ ΔCp ∂ΔS CpC CpD CpA CpB = p + q - m - n = ∂T T T T T T p p p p p ΔSp(T) T dT ∫ ∫ dT dΔSp = ΔCp dΔSp = ΔCp T T ΔSp(T0) T0 T ∫ dT ΔSp(T) - ΔSp(T0) = ΔCp T T0

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.3 Biến đổi của biến đổi entropy theo nhiệt độ ΔCp ∂ΔS CpC CpD CpA CpB = p + q - m - n = ∂T T T T T p T p p p p ΔSp(T) T dT ∫ ∫ dT dΔSp = ΔCp dΔSp = ΔCp T T ΔSp(T0) T0

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.3 Biến đổi của biến đổi entropy theo nhiệt độ T ∫ dT ΔSp(T) - ΔSp(T0) = ΔCp T T0 T ∫ dT ΔSp(T) = ΔSp(T0) + ΔCp T T0

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.4 Biến đổi của entropy trong quá trình thuận nghịch và không thuận nghịch với hệ cô lập và không cô lập Trong một biến đổi thuận nghịch Nếu hệ cô lập thì biến đổi entropy của hệ bằng không. Nếu hệ không cô lập thì hệ cộng môi trường ngoài tạo thành hệ cô lập. Tổng số biến đổi entropy của hệ và entropy của môi trường ngoài bằng không

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.4 Biến đổi của entropy trong quá trình thuận nghịch và không thuận nghịch với hệ cô lập và không cô lập Trong một biến đổi không thuận nghịch Nếu hệ cô lập thì biến đổi entropy của hệ lớn hơn không. Nếu hệ không cô lập thì hệ cộng môi trường ngoài tạo thành hệ cô lập. Tổng số biến đổi entropy của hệ và entropy của môi trường ngoài lớn hơn không.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.4 Biến đổi của entropy trong quá trình thuận nghịch và không thuận nghịch với hệ cô lập và không cô lập Một phản ứng tự xảy ra nếu ΔS vũ trụ là dương ΔSuniverse = ΔSsystem + ΔSsurroudings Trước tiên tính được entropy tạo ra do sự biến đổi phân tán vật chất (ΔS hệ) Tiếp theo tính được entropy tạo ra do sự phân tán năng lượng (ΔS môi trường xung quanh)

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.4 Biến đổi của entropy trong quá trình thuận nghịch và không thuận nghịch với hệ cô lập và không cô lập Ví dụ quá trình tạo thành nước lỏng 2 H2 (g) + O2 (g) = 2 H2O (l) ΔS0 = 2 S0 (H2O) - [2 S0 (H2) + S0 (O2)] ΔS0 = 2 x 69,9 - [2 x 130,7 + 205,3] = - 326,9 J/K < 0

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.5 Biến đổi của entropy trong quá trình thay đổi trạng thái của chất nguyên chất Qsurroudings - ΔHsystem ΔSsurroudings = = T T ΔH0298 H2O (l) = - 285,8 kJ/mol ΔH0system H2O (l) = 2x(- 285,8) kJ/mol -2x(- 285,8) kJ/mol x 1000 J/kJ ΔS0surroudings = = + 1917 J/K 298,15 K

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.3.3 Cách tính biến đổi entropy 4.3.3.5 Biến đổi của entropy trong quá trình thuận nghịch và không thuận nghịch với hệ cô lập và không cô lập ΔS0 system = - 326,9 J/K < 0 ΔS0universe = - 326,9 + 1917 = + 1590 J/K > 0

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.4 Nguyên lý III của nhiệt động học 4.4.1 Nguyên lý III “Entropy của các chất nguyên chất dưới dạng tinh thể hoàn hảo ở không độ tuyệt đối bằng không”. Tinh thể hoàn hảo ở không độ K, ở đó các phân tử có một cách sắp xếp duy nhất ổn định, khi đó ứng với một trạng thái vĩ mô chỉ có một trạng thái vi mô. Xác suất nhiệt động W = 1. Do đó S = K .LnW = 0 lim S = 0 T 0

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.4 Nguyên lý III của nhiệt động học 4.4.2 Entropy tuyệt đối Nguyên lý III cho phép tính entropy tuyệt đối của các chất nguyên chất ở bất kỳ nhiệt độ nào. Giả sử nâng 1 mol chất nguyên chất ở dạng tinh thể hoàn hảo từ 0K lên TK, P = const. 0K Tmp K Tbp K TK

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.4.2 Entropy tuyệt đối 0K Tmp K Tbp K TK Tmp Tbp T Cp(s) ΔHmp Cp(l) ΔHbp Cp(g) ∫ ∫ ∫ ΔS = ST – S0 = dT dT + + dT + + T Tmp T Tbp Tbp T Tmp Tmp Tbp T Cp(s) ΔHmp Cp(l) ΔHbp Cp(g) ∫ ∫ ∫ ST = dT + + dT + + dT T Tmp T Tbp Tbp T Tmp ST entropy tuyệt đối ở nhiệt độ T và áp suất P, có sự thay đổi trạng thái

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.4.2 Entropy tuyệt đối 0K Tmp K Tbp K TK Cp T Tmp K Tbp K TK T

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5 Thế nhiệt động và chiều hướng diễn biến của quá trình hoá học Đối với hệ cô lập, sự biến đổi entropy cho phép xác định tiêu chuẩn tự diễn biến và giới hạn của quá trình hoá học xảy ra. Trong hoá học thường gặp hệ không cô lập, xảy ra các quá trình đẳng nhiệt, đẳng áp và đẳng tích. Trong trường hợp này sự biến đổi entropy cho phép xác định tiêu chuẩn tự diễn biến và giới hạn của quá trình hoá học xảy ra, nếu hệ không cô lập này được gộp với thể tích đủ lớn của môi trường để tạo ra hệ cô lập. Để khảo sát các quá trình xảy ra trong hệ với các tiêu chuẩn liên quan duy nhất với hệ, hàm thế nhiệt động đã dược sử dụng.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.1 Định nghĩa thế nhiệt động Công di chuyển vật từ trạng thái 1 có thế năng E1 sang trạng thái 2 có thế năng E2 không phụ thuộc vào cách di chuyển vật. Thế năng là hàm trạng thái. “Thế nhiệt động là những hàm trạng thái của hệ mà một trong những tính chất của nó là độ giảm thế nhiệt động trong những điều kiện xác định thì bằng công do hệ thực hiện trong quá trình thuận nghịch xảy ra trong các điều kiện đó”. G = H-TS Hàm G được gọi là thế đẳng nhiệt đẳng áp (thế đẳng áp), năng lượng Gibbs, enthalpy tự do. A = U-TS Hàm A được gọi là thế đẳng nhiệt đẳng tích (thế đẳng tích), năng lượng Helmhotz.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.2 Biểu thức toán học của hàm thế nhiệt động và chiều hướng diễn biến Giả sử một hệ trao đổi với môi trường ở nhiệt độ T một nhiệt lượng vô cùng nhỏ Q và ngoài công giãn nở vô cùng nhỏ W = -PdV hệ còn thực hiện công có ích W’ (công của dòng điện trong Pin). Theo nguyên lý I dU = Q + (-PdV) + W’ Theo nguyên lý II Q dS ≥ T

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.2 Biểu thức toán học của hàm thế nhiệt động và chiều hướng diễn biến Kết hợp nguyên lý I và II dU ≤ TdS + (-PdV) + W’ W’ ≥ dU - TdS + PdV W’ ≥ ΔU - TΔS + PΔV W’ ≥ (U2 – U1) – T(S2 – S1) + P(V2 – V1) W’ ≥ (U2 + PV2 - TS2) – (U1 + PV1 - TS1)

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.2 Biểu thức toán học của hàm thế nhiệt động và chiều hướng diễn biến Kết hợp nguyên lý I và II W’ ≥ (U2 + PV2 - TS2) – (U1 + PV1 - TS1) W’ ≥ (H2 - TS2) – (H1 - TS1) W’ ≥ (G2) – (G1) W’ ≥ ΔG Công có ích được tạo ra bằng hoặc lớn hơn biến thiên thế đẳng áp đẳng nhiệt của hệ trong quá trình hoá học.

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.2 Biểu thức toán học của hàm thế nhiệt động và chiều hướng diễn biến Kết hợp nguyên lý I và II G = H - TS dG = dH – TdS - SdT Trong quá trình đẳng áp, đẳng nhiệt thường gặp trong các phản ứng hoá học. ΔG = ΔH - TΔS

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.2 Biểu thức toán học của hàm thế nhiệt động và chiều hướng diễn biến ΔG = ΔH - TΔS ΔH ΔS ΔG ( - ) toả nhiệt ( + ) tăng < 0 tự diễn biến ( + ) thu nhiệt ( - ) giảm > 0 không tự diễn biến ( - ) toả nhiệt ( - ) giảm Tuỳ thuộc nhiệt độ T ( + ) thu nhiệt ( + ) tăng Tuỳ thuộc nhiệt độ T

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.2 Biểu thức toán học của hàm thế nhiệt động và chiều hướng diễn biến ΔG0 = ΔH0 – TΔS0 Ví dụ tính enthalpy tự do của phản ứng sau theo hai cách C2H2 (g) + O2 (g) CO2 (g) + H2O (g) ΔG0298 (kJ/mol) ΔH0298 (kJ/mol) S0298 (J/mol.K) +209,2 0 -394,38 -228,59 +226,75 0 -393,51 -241,83 +200,82 +205,03 +213,64 +188,72 Cho nhận xét (-1226,6)

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.2 Biểu thức toán học của hàm thế nhiệt động và chiều hướng diễn biến ΔG0 = ΔH0 – TΔS0 Ví dụ ở nhiệt độ nào phản ứng sau tự xảy ra Fe2O3 (s) + C (s) Fe (s) + CO2 (g) ΔG0298 (kJ/mol) ΔH0298 (kJ/mol) S0298 (J/mol.K) -741,0 0 0 -394,38 -822,2 0 0 -393,51 +90,0 +5,69 +27,15 +213,64 Cho nhận xét (839,7)

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.2 Biểu thức toán học của hàm thế nhiệt động và chiều hướng diễn biến ΔG0 = ΔH0 – TΔS0 Ví dụ xác định chiều phản ứng ở 298K. Ở nhiệt độ nào đá vôi bắt đầu bị phân huỷ?. CaCO3 (s) CaO (s) + CO2 (g) ΔG0298 (kJ/mol) ΔH0298 (kJ/mol) S0298 (J/mol.K) -1128,76 -604,2 -394,38 -1206,87 -635,09 -393,51 +92,9 +39,7 +213,64

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.3.1 Sự biến đổi của enthalpy tự do theo nhiệt độ, phương trình Gibbs-Helmholtz Ta có G = H - TS dG = dH – TdS - SdT dH = d(U + PV) = dU + PdV + VdP dU ≤ TdS + (-PdV) + W’ (NL I & II) dG ≤ - SdT + VdP + W’ Nếu ngoài công giãn nở hệ không thực hiện công có ích nào khác thì: dG ≤ - SdT + VdP

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.3.1 Sự biến đổi của enthalpy tự do theo nhiệt độ, phương trình Gibbs-Helmholtz dG ≤ - SdT + VdP Từ phương trình cơ bản của nhiệt động học thấy rằng G là hàm của P và T ∂G ∂G G - H = -S = -S = ∂T ∂T T p p ∂G ∂G G H G = H + T - = - ∂T ∂T T T p p ∂(G/T) 1 ∂G ∂(1/T) ∂(ΔG) = + G ΔG = ΔH + T ∂T T ∂T ∂T p p ∂T p

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.3.1 Sự biến đổi của enthalpy tự do theo nhiệt độ, phương trình Gibbs-Helmholtz ∂(G/T) 1 ∂G ∂(1/T) ∂(G/T) H = + G = - ∂T T ∂T ∂T ∂T T2 p p p ∂(G/T) 1 ∂G 1 ΔH = - G ∂(ΔG/T) ∂T T ∂T = - T2 p ∂T T2 p p 1 ∂G ∂(G/T) G T ΔG2980 = - ΔGT0 ΔHT0 ∫ ∂T T ∂T T2 - = - dT p p T2 T 298 298

CHƯƠNG 4 NHIỆT ĐỘNG LỰC HOÁ HỌC 4.5.3.1 Sự biến đổi của enthalpy tự do theo nhiệt độ, phương trình Gibbs-Helmholtz ΔG2980 ΔGT0 T - 298 - = - ΔHT0 T 298 298T Ví dụ xác định phản ứng có dễ dàng xảy ra bên ngoài cơ thể ở 37 0C, so với ở 25 0C C6H12O6 (s) + O2 (g) CO2 (g) + H2O (l) ΔH0298 (kJ/mol) S0298 (J/mol.K) -1274,45 0 -393,51 -285,84 +212,13 +205,03 +213,64 +69,94 Cp (J/mol.K) +218,87 +29,36 +37,13 +75,30