Solving Trig Equations

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
已知三角函数值求角 已知三角函数值求角.
Advertisements

Ancient Greek for Everyone: A New Digital Resource for Beginning Greek Unit 4: Conjunctions 2013 edition Wilfred E. Major
Γειά σας. Say: take a pencil. Πάρε ένα μολύβι. Nick, give me my book.
Γειά σας.
6 Η ΠΑΡΟΥΣΙΑΣΗ: ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΑΣ, ΜΕΣΩΝ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΦΗΜΙΣΗ.
WRITING TEACHER ELENI ROSSIDOU ©Υπουργείο Παιδείας και Πολιτισμού.
By Joanna P. CAN OR CAN’T.
Further Pure 1 Roots of Equations. Properties of the roots of cubic equations Cubic equations have roots α, β, γ (gamma) az 3 + bz 2 + cz + d = 0 a(z.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Δυνάμεις, Ροπές ως προς σημείο, Στατική Ισορροπία 1.
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
Προσομοίωση Δικτύων 3η Άσκηση Δημιουργία, διαμόρφωση μελέτη σύνθετων τοπολογιών.
Time Management Matrix Assignment Submitted By Safwan Zubair October 21, 2013 BUS Contemporary Business Practice Professor Nankin.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
דוגמאות - תנועה במישור בהשפעת כוח קבוע
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Guide to Business Planning The Value Chain © Guide to Business Planning A principal use of value chain analysis is to identify a strategy mismatch between.
Relations Chapter 9.
Matrix Analytic Techniques
Αν. Καθηγητής Γεώργιος Ευθύμογλου
Αν. Καθηγητής Γεώργιος Ευθύμογλου
Καθηγητής Σιδερής Ευστάθιος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ενότητα 1η: Ο ΔΙΣΚΟΣ ΚΑΙ Η ΔΟΚΟΣ
Ποιοί είναι οι δικαστικοί σχηματισμοί του Δικαστηρίου;
Βασικές Αρχές Γεωδαισίας –Τοπογραφίας (Θ)
Adjectives Introduction to Greek By Stephen Curto For Intro to Greek
SANITARY AND STORM SEWER DESIGN A Direct Algebraic Solution
Example Rotary Motion Problems
Το ιερό δισκοπότηρο της ΙΕ γλωσσολογίας
Δικτυώματα (Δικτυωτοί Φορείς)
Χωρητικότητα ΣΤΟΧΟΣ : Ο μαθητής να μπορεί να,.
2013 edition Wilfred E. Major
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
موضوع ارائه : نظريه تقريب. موضوع ارائه : نظريه تقريب.
5.5 – Multiple-Angle and Product-to-Sum Identities
GLY 326 Structural Geology
Find: angle of failure, α
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ1 [kPa] for CD test at failure
Сабақтың тақырыбы: «Cos х = а, Sin х = а, tg х = а, ctg x = a түріндегі қарапайым тригонометриялық теңдеулер.»
Тақырыбы: Тригонометриялық функциялардың туындылары
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Find: Force on culvert in [lb/ft]
Trigonometric Identities (Lesson 5-1)
We can manipulate simple equations:
3Ω 17 V A3 V3.
Law of Sine Chapter 8.2.
3Ω 17 V A3 V3.
Homework Questions….
Deriving the equations of
JSIS E 111: Elementary Modern Greek
Атырау облысы, Индер ауданы, Өрлік селосы
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Find: ρc [in] from load (4 layers)
ΣΤΑΣΕΙΣ ΚΑΙ ΣΥΜΠΕΡΙΦΟΡΑ
Καθηγητής Σιδερής Ευστάθιος
Тригонометриялық функциялардың графиктері.
Double-Angle and Half-Angle Formulas
“Harrison Bergeron” by Kurt Vonnegut
How to do a Dihybrid Cross using a Punnett Square
Do Now: 3) y = -1/2cos (x - π/2) + 3 4) y = 25sin (x + 2π/3) - 20
Trigonometry – Sine & Cosine – Angles – Demonstration
Μεταγράφημα παρουσίασης:

Solving Trig Equations

Solve. 2 sin θ = 1 sin θ = ½ θ = π/6 OR θ = 5 π/6 But the period of sin is 2π, so θ = π/6 + 2πk θ = 5 π/6 + 2πk Think of how these multiple solutions would appear on a graph.

Solve. sec x = 2.85 so cos x = .351 Using a calculator (in radian mode), x = 1.212. Also, 2π – 1.212 = 5.071 is a solution. So x = 1.212 + 2πk or x = 5.071 + 2πk

Solve. cos2x + cos x – 2 = 0 (cos x + 2)(cos x – 1) = 0 cos x = -2 or cos x = 1 no solution x = 0 + 2πk = 2πk

Solve. 3tan2x – sec2x – 5 = 0 3tan2x - (tan2x + 1) – 5 = 0 2tan2x - 6 = 0 tan2x = 3 tan x = ±√3 x = π/3 or x = 2π/3 , but the period is π, so x= π/3 + πk or x = 2π/3 + πk (or could give all 4 answers)

Solve. sin θ = 2cos θ tan θ = 2 θ = 1.107 but the period is π, so θ = 1.107 + πk

Solve. sinx – 2 = 3csc x sin x – 2 = 3/sin x sin2 x – 2sin x = 3 sin2 x – 2sin x – 3 = 0 (sin x – 3)(sinx + 1) = 0 x = 3π/2 + 2πk

Solve. sin x + cos x = 1 (sin x + cos x)2 = 12 sin2x + 2 sin x cos x + cos2x = 1 2 sinx cos x = 0 sin x = 0 or cos x = 0 x = 0 or π or x = π/2 or 3π/2 Which of these work? So x =0 +2πk = 2πk or x = π/2 + 2πk

Why can’t you divide both sides by 3? Since sin π/2 = 1 , Solve . sin 3x = 1 Why can’t you divide both sides by 3? Since sin π/2 = 1 , 3x = π/2 and therefore x = π/6 is a solution. But all solutions are in the form π/2 + 2πk, so 3x = π/2 + 2πk and x = π/6 + (2πk)/3 Can you list all solutions between 0 and 2π?