CHƯƠNG 2 HỒI QUY ĐƠN BIẾN.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
c¸c thÇy c« gi¸o vÒ dù héi gi¶ng côm
Advertisements

Kiểm thử và đảm bảo chất lượng phần mềm
GV: BÙI VĂN TUYẾN.
TỔNG QUAN MÔN HỌC KINH TẾ LƯỢNG
Cơ cấu thương mại hàng hóa việt nam – nhật bản giai đoạn
Học phần: LẬP TRÌNH CƠ BẢN
BÀI GIẨNG NGUYÊN LÝ THỐNG KÊ
Chương 5. Hàng đợi (Queue) PGS. TS. Hà Quang Thụy.
Nguyễn Văn Vũ An Bộ môn Tài chính – Ngân hàng (TVU)
ĐẠI SỐ BOOLEAN VÀ MẠCH LOGIC
LASER DIODE CẤU TRÚC CẢI TIẾN DỰA VÀO HỐC CỘNG HƯỞNG
1 BÁO CÁO THỰC TẬP CO-OP 3,4 PHÒNG TRỊ BỆNH TRÊN CHÓ MÈO Sinh viên: Nguyễn Quang Trực Lớp: DA15TYB.
Trường THPT Quang Trung
Trường Đại Học Điện Lực Khoa Đại Cương Hóa Đại Cương.
II Cường độ dòng điện trong chân không
BÀI TIỂU LUẬN KẾT THÚC MÔN LÍ LUẬN DẠY HỌC HIỆN ĐẠI
Sự nóng lên và lạnh đi của không khí Biến thiên nhiệt độ không khí
TIÊT 3 BÀI 4 CÔNG NGHỆ 9 THỰC HÀNH SỬ DỤNG ĐỒNG HỒ VẠN NĂNG.
Bài giảng tin ứng dụng Gv: Trần Trung Hiếu
ĐỘ PHẨM CHẤT BUỒNG CỘNG HƯỞNG
MA TRẬN VÀ HỆ PHƯƠNG TRÌNH ĐẠI SỐ TUYẾN TÍNH
ĐỒ ÁN: TUABIN HƠI GVHD : LÊ MINH NHỰT NHÓM : 5
TÁC ĐỘNG CỦA THU HỒI ĐẤT KHU VỰC NÔNG THÔN ĐẾN THU NHẬP VÀ CHI TIÊU CỦA CÁC HỘ GIA ĐÌNH TẠI THÀNH PHỐ CẦN THƠ NCS Lê Thanh Sơn.
BÀI 5: PHÂN TÍCH PHƯƠNG SAI (ANOVA)
Chương 6 TỰ TƯƠNG QUAN.
Chương 2 HỒI QUY 2 BIẾN.
Tối tiểu hoá hàm bool.
CHƯƠNG 7 Thiết kế các bộ lọc số
Máy lái GYLOT 107 Nhóm 6.
TRƯỜNG ĐẠI HỌC TÂY NGUYÊN KHOA: KHTN&CN BỘ MÔN: CÔNG NGHỆ MÔI TRƯỜNG
Bài tập Xử lý số liệu.
CHẾ ĐỘ NHIỆT CỦA ĐẤT Cân bằng nhiệt mặt đất
HIỆN TƯỢNG TỰ TƯƠNG QUAN (Autocorrelation)
CHƯƠNG 2 DỰ BÁO NHU CẦU SẢN PHẨM
ĐẠI HỌC HÀNG HẢI VIỆT NAM
GV giảng dạy: Huỳnh Thái Hoàng Nhóm 4: Bùi Trung Hiếu
(Cải tiến tính chất nhiệt điện bằng cách thêm Sb vào ZnO)
LỌC NHIỄU TÍN HIỆU ĐIỆN TIM THỜI GIAN THỰC BẰNG VI ĐiỀU KHIỂN dsPIC
NỘI DUNG Chương 1: Giới thiệu môn học
cho Ngân hàng Nhà nước Việt Nam
PHÁT XẠ NHIỆT ĐIỆN TỬ PHẠM THANH TÂM.
ĐỊNH GIÁ CỔ PHẦN.
CHƯƠNG 11. HỒI QUY ĐƠN BIẾN - TƯƠNG QUAN
Bộ khuyếch đại Raman.
SỰ PHÁT TẦN SỐ HIỆU HIỆU SUẤT CAO TRONG TINH THỂ BBO
Kinh tế vĩ mô của nền kinh tế mở: Những khái niệm cơ bản
BIẾN GIẢ TRONG PHÂN TÍCH HỒI QUY
Võ Ngọc Điều Đại học Bách Khoa TP Hồ Chí Minh Lê Đức Thiện Vương
Corynebacterium diphtheriae
CHUYÊN ĐỀ 5: KỸ THUẬT TỔ CHỨC HOẠT ĐỘNG HỌC CỦA HỌC SINH
QUẢN TRỊ HÀNG TỒN KHO VÀ TIỀN MẶT
PHAY MẶT PHẲNG SONG SONG VÀ VUÔNG GÓC
GV: ThS. TRƯƠNG QUANG TRƯỜNG TRƯỜNG ĐẠI HỌC NÔNG LÂM TP.HCM
CHƯƠNG II: LÝ THUYẾT HIỆN ĐẠI VỀ THƯƠNG MẠI QUỐC TẾ.
KIỂM TRA BÀI CŨ CÂU 1: * Nêu định nghĩa đường thẳng vuông góc với mặt phẳng? * Nêu cách chứng minh đường thẳng d vuông góc với mp(α)? d  CÂU 2: * Định.
NHIỆT LIỆT CHÀO MỪNG QUÝ THẦY CÔ VỀ DỰ GIỜ LỚP 7A Tiết 21 - HÌNH HỌC
Tiết 20: §1.SỰ XÁC ĐỊNH ĐƯỜNG TRÒN. TÍNH CHẤT ĐỐI XỨNG CỦA ĐƯỜNG TRÒN
Chương 3. QUẢN TRỊ NHU CẦU VÀ CÔNG SUẤT DỊCH VỤ
Chương I: BÀI TOÁN QHTT Bài 5. Phương pháp đơn hình cho bài toán QHTT chính tắc có sẵn ma trận đơn vị xét bt: Với I nằm trong A, b không âm.
XLSL VÀ QHTN TRONG HÓA (30)
Líp 10 a2 m«n to¸n.
HÓA HỌC ĐẠI CƯƠNG (30 tiết)
ĐÀI TIẾNG NÓI VIỆT NAM TRƯỜNG CAO ĐẲNG PTTH 1.
PHƯƠNG PHÁP CHỌN MẪU TRONG NGHIÊN CỨU MARKETING
Chuyển hóa Hemoglobin BS. Chi Mai.
CƠ HỌC LÝ THUYẾT 1 TRƯỜNG ĐẠI HỌC KĨ THUẬT CÔNG NGHIỆP THÁI NGUYÊN
KHUẾCH ĐẠI VÀ DAO ĐỘNG THÔNG SỐ QUANG HỌC
LỢI NHUẬN VÀ RỦI RO.
KHOA HỌC CHẨN ĐOÁN TÂM LÝ
CƠ CHẾ PHẢN ỨNG 1. Gốc tự do, carbocation, carbanion, carben, arin
Μεταγράφημα παρουσίασης:

CHƯƠNG 2 HỒI QUY ĐƠN BIẾN

HỒI QUY ĐƠN BIẾN Biết được phương pháp ước lượng bình phương nhỏ nhất để ước lượng hàm hồi quy tổng thể dựa trên số liệu mẫu Hiểu các cách kiểm định những giả thiết Sử dụng mô hình hồi quy để dự báo MỤC TIÊU

NỘI DUNG 1 Mô hình 2 Phương pháp bình phương nhỏ nhất (OLS) 3 Khoảng tin cậy 4 Kiểm định giả thiết 5 Ví dụ

Ví dụ Cho số liệu về số lượng gạo bán (tấn) hàng tháng của 6 cửa hàng gạo. Nếu anh A mở một của hàng gạo thì dự báo lượng gạo bán hàng tháng. Cửa hàng Số lượng 1 10 2 6 3 9 4 5

Ví dụ Cửa hàng Giá Số lượng 1 10 2 4 6 3 9 5 7 Nếu anh A muốn bán gạo mức giá 6 ngàn đ/kg thì dự báo số lượng gạo bán trong tháng. Cửa hàng Giá Số lượng 1 10 2 4 6 3 9 5 7

2.1 MÔ HÌNH Mô hình hồi quy tuyến tính hai biến (đơn biến) PRF dạng xác định E(Y/Xi) = f(Xi)= β1 + β2Xi dạng ngẫu nhiên Yi = E(Y/Xi) + Ui = β1 + β2Xi + Ui SRF dạng xác định

2.1 MÔ HÌNH Trong đó : Ước lượng cho b1. : Ước lượng cho b2. : Ước lượng cho E(Y/Xi) Sử dụng phương pháp bình phương nhỏ nhất thông thường (OLS) để tìm ,

Hình 2.1: Hệ số hồi quy trong hàm hồi quy PRF và SRF 2.1 MÔ HÌNH Hình 2.1: Hệ số hồi quy trong hàm hồi quy PRF và SRF

2.2 PHƯƠNG PHÁP OLS Giả sử có n cặp quan sát (Xi, Yi). Tìm giá trị Ŷi sao cho Ŷi gần giá trị Yi nhất, tức ei= |Yi - Ŷi| càng nhỏ càng tốt. Tuy nhiên, ei thường rất nhỏ và thậm chí bằng 0 vì chúng triệt tiêu lẫn nhau. Để tránh tình trạng này, ta dùng phương pháp bình phương nhỏ nhất (Ordinary least squares OLS ). Với n cặp quan sát, muốn

2.2 PHƯƠNG PHÁP OLS Điều kiện (*) có nghĩa tổng bình phương các sai lệch giữa giá trị thực tế (Yi ) và giá trị tính theo hàm hồi quy mẫu là nhỏ nhất. Bài toán thành tìm , sao cho f  min Điều kiện để phương trình trên đạt cực trị là:

2.2 PHƯƠNG PHÁP OLS Hay

2.2 PHƯƠNG PHÁP OLS Giải hệ ta được

2.2 PHƯƠNG PHÁP OLS Với là trung bình mẫu (theo biến) gọi là độ lệch giá trị của biến so với giá trị trung bình mẫu

Đặc điểm của đường hồi quy mẫu Một khi thu được các ước lượng từ mẫu, ta có thể vẽ được đường hồi quy mẫu và đường này có những đặc tính sau:

Đặc điểm của đường hồi quy mẫu Nó đi qua giá trị trung bình mẫu của X và Y, do Hình 2.2: Đường hồi quy mẫu qua giá trị trung bình

Đặc điểm của đường hồi quy mẫu 2. Giá trị ước lượng trung bình của Y bằng với giá trị trung bình của Y quan sát. 3. Giá trị trung bình của sai số ei bằng 0: ē = 0. 4. Sai số ei không có tương quan với giá trị dự báo của Yi. 5. Sai số ei không có tương quan với Xi.

CÁC TỔNG BÌNH PHƯƠNG ĐỘ LỆCH TSS = RSS + ESS

CÁC TỔNG BÌNH PHƯƠNG ĐỘ LỆCH TSS (Total Sum of Squares - Tổng bình phương sai số tổng cộng) ESS: (Explained Sum of Squares - Bình phương sai số được giải thích) RSS: (Residual Sum of Squares - Tổng bình phương sai số)

CÁC TỔNG BÌNH PHƯƠNG ĐỘ LỆCH Y SRF ESS Tổng chênh lệch TSS RSS Yi Xi X Hình 2.3: Ý nghĩa hình học của TSS, RSS và ESS

Hệ số xác định R2: một thước đo mức độ phù hợp của hàm hồi quy mẫu. TSS = ESS + RSS → Hàm SRF phù hợp tốt với các số liệu quan sát (mẫu) khi gần Yi . Khi đó ESS lớn hơn RSS. Hệ số xác định R2: một thước đo mức độ phù hợp của hàm hồi quy mẫu.

Trong mô hình 2 biến, người ta chứng minh được rằng HỆ SỐ XÁC ĐỊNH R2 Trong mô hình 2 biến, người ta chứng minh được rằng

TÍNH CHẤT CỦA HỆ SỐ XÁC ĐỊNH R2 Cho biết % sự biến động của Y được giải thích bởi các biến số X trong mô hình. R2 =1: đường hồi quy phù hợp hoàn hảo R2 =0: X và Y không có quan hệ Nhược điểm: R2 tăng khi số biến X đưa vào mô hình tăng, dù biến đưa vào không có ý nghĩa. =>Sử dụng R2 điều chỉnh (adjusted R2 -R2) để quyết định đưa thêm biến vào mô hình.

HỆ SỐ XÁC ĐỊNH ĐIỀU CHỈNHR2 Khi k > 1, R2 < R2. Do vậy, khi số biến X tăng,R2 sẽ tăng ít hơn R2. Khi đưa thêm biến vào mô hình mà làm choR2 tăng thì nên đưa biến vào và ngược lại.

HỆ SỐTƯƠNG QUAN r Hệ số tương quan r: đo lường mức độ chặt chẽ của quan hệ tuyến tính giữa 2 đại lượng X và Y.

TÍNH CHẤT HỆ SỐTƯƠNG QUAN r r > 0: giữa X và Y có quan hệ đồng biến r-> ± 1: X và Y có quan hệ tuyến tính chặt chẽ r-> 0: X và Y có quan hệ tuyến tính không chặt chẽ r < 0: X và Y có quan hệ nghịch biến Hệ số tương quan có tính chất đối xứng: rXY = rYX Nếu X, Y độc lập theo quan điểm thống kê thì hệ số tương quan giữa chúng bằng 0. r chỉ là đại lượng đo sự kết hợp tuyến tính hay phụ thuộc tuyến tính, r không có ý nghĩa để mô tả quan hệ phi tuyến.

Có thể chứng minh được và r cùng dấu với VD: HỆ SỐTƯƠNG QUAN r Có thể chứng minh được và r cùng dấu với VD: Với R2 = 0,81 => r = ± 0,9 = 0,9

Đo lường mức độ quan hệ giữa X và Y HIỆP TƯƠNG QUAN MẪU Đo lường mức độ quan hệ giữa X và Y

2.3 Các giả thiết của phương pháp OLS Giả thiết 1: Các giá trị Xi được xác định trước và không phải là đại lượng ngẫu nhiên. VD: Mẫu 1 Mẫu 2 Chi tiêu Y Thu nhập X 70 80 65 100 90 120 95 140 110 160 115 180 200 220 155 240 150 260 Chi tiêu Y Thu nhập X 55 80 88 100 90 120 140 118 160 180 145 200 135 220 240 175 260

2.3 Các giả thiết của phương pháp OLS Giả thiết 2: Kỳ vọng hoặc trung bình số học của các sai số là bằng 0 (zero conditional mean), nghĩa là E(U/Xi) = 0 Giả thiết 3: Các sai số U có phương sai bằng nhau (homoscedasticity). Var(U/Xi) = σ2

2.3 Các giả thiết của phương pháp OLS Phương sai sai số đồng nhất: Var(U/Xi) = σ2

Phương sai sai số không đồng nhất: var(Ui|Xi) = i2 2.3 Các giả thiết của phương pháp OLS Phương sai sai số không đồng nhất: var(Ui|Xi) = i2

2.3 Các giả thiết của phương pháp OLS Giả thiết 4: Các sai số U không có sự tương quan, nghĩa là Cov(Ui, Ui’) = E(UiUi’) = 0, nếu i  i’

Một số kiểu mẫu biến thiên của thành phần nhiễu

2.3 Các giả thiết của phương pháp OLS Giả thiết 5: Các sai số U độc lập với biến giải thích. Cov(Ui, Xi) = 0 Giả thiết 6: Đại lượng sai số ngẫu nhiên có phân phối chuẩn Ui ~ N(0, δ2 )

, là ước lượng điểm của , tìm được bằng phương pháp OLS có tính chất: 2.4 TÍNH CHẤT CÁC ƯỚC LƯỢNG , là ước lượng điểm của , tìm được bằng phương pháp OLS có tính chất: , được xác định một cách duy nhất với n cặp giá trị quan sát (Xi , Yi) , là các đại lượng ngẫu nhiên, với các mẫu khác nhau, giá trị của chúng sẽ khác nhau Ta đo lường độ chính xác các ước lượng bằng sai số chuẩn (standard error – se).

Sai số chuẩn của các ước lượng OLS var: phương sai se: sai số chuẩn 2: phương sai nhiễu của tổng thể 2 = Var (Ui ) -> thực tế khó biết được giá trị 2 -> dùng ước lượng không chệch

Sai số chuẩn của các ước lượng OLS

Sai số chuẩn của các ước lượng OLS Sai số chuẩn của hồi quy: là độ lệch tiêu chuẩn các giá trị Y quanh đường hồi quy mẫu

Định lý Gauss-Markov Định lý: Với những giả thiết (từ 1 đến 5) của mô hình hồi quy tuyến tính cổ điển, mô hình hồi quy tuyến tính theo phương pháp bình phương tối thiểu là ước lượng tuyến tính không chệch tốt nhất, tức là, chúng là BLUE.

Định lý Gauss-Markov Một ước lượng được gọi là “ước lượng không chệch tuyến tính tốt nhất” (BLUE) nếu thỏa các điều kiện: Nó là tuyến tính, có nghĩa là một hàm tuyến tính của một biến ngẫu nhiên, Nó không chệch, Nó có phương sai nhỏ nhất, hay còn gọi là ước lượng hiệu quả (efficient estimator).

2.4 KHOẢNG TIN CẬY CỦA HỆ SỐ HỒI QUY   Xác suất của khoảng (i - i, i + i) chứa giá trị thực của i là 1 -  hay: P(i - i  i  i + i) = 1 - . với  

2.4 KHOẢNG TIN CẬY CỦA HỆ SỐ HỒI QUY   (i - i, i + i) : là khoảng tin cậy, i : độ chính xác của ước lượng 1 - : hệ số tin cậy,  với (0 <  < 1): là mức ý nghĩa. t (/2, n-2): giá trị tới hạn (tìm bằng cách tra bảng số t-student) n: số quan sát Ví dụ: nếu  = 0,05 = 5%, ta đọc “xác suất để khoảng tin cậy chứa giá trị thực của 1 , 2 là 95%.

2.4 KHOẢNG TIN CẬY CỦA 2 hay , : giá trị của đại lượng ngẫu nhiên phân phối theo quy luật với bậc tự do n-2 thỏa điều kiện

2.5 KIỂM ĐỊNH GIẢ THUYẾT Do Ui theo phân phối chuẩn, các ước lượng OLS của 1 và 2 cũng theo phân phối chuẩn vì chúng là các hàm số tuyến tính của Ui. Chúng ta có thể áp dụng các kiểm định t, F, và 2 để kiểm định các giả thuyết về các ước lượng OLS.

1. Kiểm định giả thuyết về hệ số hồi quy Hai phía: Phía phải: Phía trái:

1. Kiểm định giả thuyết về hệ số hồi quy Cách 1: Phương pháp giá trị tới hạn Bước 1: Tính t Bước 2: Tra bảng t-student để có giá trị tới hạn Bước 3: Quy tắc quyết định Nếu bác bỏ H0. Nếu chấp nhận H0. 1. Kiểm định giả thuyết về hệ số hồi quy

-4 -3 -2 -1 1 2 3 4 t f(t) a/2 -t 1-a Miền chấp nhận Ho Miền bác bỏ Ho Miền bác bỏ Ho

1. Kiểm định giả thuyết về hệ số hồi quy Cách 2: Phương pháp khoảng tin cậy Khoảng tin cậy của i: với mức ý nghĩa  trùng với mức ý nghĩa của H0 Quy tắc quyết định - Nếu chấp nhận H0 - Nếu bác bỏ H0

1. Kiểm định giả thuyết về hệ số hồi quy Cách 3: Phương pháp p-value Bước 1: Tính Bước 2: Tính Bước 3: Quy tắc quyết định - Nếu p ≤ : Bác bỏ H0 - Nếu p > : Chấp nhận H0

Quyết định đúng, xác suất 1-α Thực tế H0 đúng H0 sai Quyết định Không bác bỏ Quyết định đúng, xác suất 1-α Quyết định sai, xác suất β (Sai lầm loại 2)   Bác bỏ Quyết định sai, xác suất α Quyết định đúng, xác suất 1-β (Sai lầm loại 1)

1. Kiểm định giả thuyết về hệ số hồi quy Loại GT H0 H1 Miền bác bỏ Hai phía βi = βi* βi ≠ βi* |t|>t/2 (n-2) Phía phải βi ≤ βi* βi > βi* t>t (n-2) Phía trái βi ≥ βi* βi < βi* t<-t (n-2)

Kiểm định phía phải H0 : βi ≤ βi* H1 : βi > βi* f(t) 1-a a Miền bác bỏ Ho t a t

Kiểm định phía trái H0 : βi ≥ βi* H1 : βi < βi* f(t) 1-a a Miền bác bỏ Ho -t a t

2. Kiểm định sự phù hợp của mô hình Kiểm định giả thiết H0: R2 = 0 (tương đương H0: β2= 0) với mức ý nghĩa  hay độ tin cậy 1 -  Bước 1: Tính a. Phương pháp giá trị tới hạn Bước 2: Tra bảng F với mức ý nghĩa  và hai bậc tự do (1, n-2) Bước 3: Quy tắc quyết định - Nếu F > F(1,n-2): Bác bỏ H0 - Nếu F ≤ F(1,n-2): Chấp nhận H0

2. Kiểm định sự phù hợp của mô hình b. Phương pháp p-value Bước 2: Tính p-value= p (F(1,n-2)>F) Bước 3: Quy tắc quyết định - Nếu p ≤  : Bác bỏ H0 - Nếu p > : Chấp nhận H0

Thống kê F F =0,05 Miền bác bỏ Ho Miền chấp nhận Ho F(1,n-2)

2.6 DỰ BÁO Với mô hình hồi quy Cho trước giá trị X = X0, hãy dự báo giá trị trung bình và giá trị cá biệt của Y với mức ý nghĩa  hay độ tin cậy 1 - . * Ước lượng điểm

2.6 DỰ BÁO * Dự báo giá trị trung bình của Y Với:

2.6 DỰ BÁO * Dự báo giá trị cá biệt của Y Với:

2.7 HỒI QUY VÀ ĐƠN VỊ ĐO CỦA BIẾN Nếu đơn vị đo của biến X, Y thay đổi thì không cần hồi quy lại. Mô hình hồi quy mới là Trong đó

VÍ DỤ 1 Theo số liệu quan sát sự biến động của nhu cầu gạo Y (tấn/tháng) vào đơn giá X (ngàn đồng/kg) STT Xi Yi 1 10 2 4 6 3 9 5 7

VÍ DỤ 1 a.Hãy lập mô hình hồi quy mẫu biễu diễn mối phụ thuộc về nhu cầu vào đơn giá gạo b.Tìm khoảng tin cậy của 1, 2 với =0,05 c. Hãy xét xem nhu cầu của loại hàng trên có phụ thuộc vào đơn giá của nó không với =0,05. d. Có thể nói rằng nếu giá gạo tăng 1.000đ/kg thì nhu cầu gạo trung bình giảm 2 tấn/tháng không? Cho với =0,05 e. Hãy kiểm định sự phù hợp của mô hình. Cho =0,05. f. Hãy dự báo nhu cầu trung bình và nhu cầu cá biệt của loại hàng trên khi đơn giá ở mức 6.000 đồng/kg với độ tin cậy 95%. g. Hãy viết lại hàm hồi quy nếu nhu cầu gạo được tính theo đơn vị là tạ và giá có đơn vị là đồng. h. Tính TSS, ESS, RSS, R2 i. Tính r, Cov(X,Y)

VÍ DỤ 1 a. Mô hình hồi quy mẫu biễu diễn mối phụ thuộc về nhu cầu vào đơn giá gạo

VÍ DỤ 1 Giả sử mô hình hồi quy mẫu là:

VÍ DỤ 1 Như vậy, mô hình hồi quy mẫu => X và Y có quan hệ nghịch biến * = 11,5: nhu cầu tối đa là 11,5 tấn/tháng * = -1,375: khi giá tăng 1000 đồng/kg thì nhu cầu trung bình sẽ giảm 1,375 tấn/tháng với điều kiện các yếu tố khác trên thị trường không đổi.

VÍ DỤ 1 Ta có Mà: =>

VÍ DỤ 1

VÍ DỤ 1 Tra bảng ta có Ý nghĩa R2 : Trong hàm hồi quy mẫu, biến giá (biến X) giải thích được 98,64% sự thay đổi của biến nhu cầu (biến Y), 1,36% sự thay đổi còn lại của Y do các yếu tố ngẫu nhiên gây ra

VÍ DỤ 1 c. Kiểm định giả thuyết 2 = 0 H0: 2 = 0 C1: Sử dụng khoảng tin cậy. Theo kết quả ở câu a, với  = 0,05, 2 không thuộc khoảng tin cậy => bác bỏ H0 C2: => => Bác bỏ H0, hay nhu cầu trung bình có phụ thuộc vào đơn giá

VÍ DỤ 1 C3: sử dụng kiểm định F đối với mô hình hai biến Mà F0,05(1,4) = 7,71 < Ftt => Bác bỏ H0, hay nhu cầu trung bình có phụ thuộc vào đơn giá

VÍ DỤ 1 d. Dự báo Dự báo điểm: (tấn/tháng) Dự báo giá trị trung bình của Y

VÍ DỤ 1 - Dự báo giá trị cá biệt của Y Vậy, khi đơn giá là 6.000 đồng/kg ở một tháng nào đó thì nhu cầu sẽ dao động từ 2-4,5 tấn. *Ghi chú:

VÍ DỤ 2 Cho số liệu chi tiêu tiêu dùng Y (USD/tuần) và thu nhập hàng tuần X (USD/tuần) của 10 hộ gia đình. Giả sử X và Y có quan hệ tuyến tính trong đó Y là biến phụ thuộc Yi Xi 70 80 65 100 90 120 95 140 110 160 115 180 200 220 155 240 150 260

VÍ DỤ 2 Chạy số liệu trên Eviews, ta có kết quả sau

Viết hàm hồi quy Y theo X. Ý nghĩa các hệ số hồi quy Tính khoảng tin cậy của B2. Ý nghĩa của khoảng tin cậy này là gì? Cho độ tin cậy 95%. Nếu thu nhập của hộ gia đình tăng 1 USD/tuần thì chi tiêu trung bình của hộ gia đình có tăng 0.7 USD/tuần không? Cho mức ý nghĩa 5%. Mô hình có phù hợp không? Cho mức ý nghĩa 1%. Dự báo chi tiêu và chi tiêu trung bình của hộ gia đình khi thu nhập là 300 USD/tuần. Cho mức ý nghĩa 5% và X trung bình là 170 USD/tuần.

VÍ DỤ 2 Trình bày kết quả phân tích hồi quy Lưu ý