Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ.
Advertisements

Tάσος Μπούντης Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών
Πιθανότητες & Τυχαία Σήματα Συσχέτιση
ΤΑΛΑΝΤΩΣΗ ΣΕ ΔΙΕΓΕΡΣΗ ΠΛΗΓΜΑΤΟΣ
Tάσος Μπούντης Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών
Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
Εισαγωγή στις ανισώσεις
Γ΄ κατεύθυνση Προβληματισμοί για τους ορισμούς, θεωρήματα, παραδείγματα και τις ασκήσεις του 3ου κεφαλαίου
ΚΙΝΗΤΙΚΗ ΑΝΑΠΤΥΞΗΣ ΜΙΚΡΟΒΙΩΝ ΚΑΙ ΠΑΡΑΓΩΓΗΣ ΜΕΤΑΒΟΛΙΚΩΝ ΠΡΟΪΟΝΤΩΝ
Αριθμητικές Μέθοδοι Βελτιστοποίησης Θεωρία & Λογισμικό Τμήμα Πληροφορικής - Πανεπιστήμιο Ιωαννίνων Ι. Η. Λαγαρής.
Ο Μετασχηματισμός Laplace και ο Μετασχηματισμός Ζ
Υπολογιστική Μοντελοποίηση στη Βιοϊατρική Τεχνολογία
Μια εξίσωση της μορφής αχ + βχ = γ όπου α,β,γ είναι πραγματικοί αριθμοί και x, y μεταβλητές, ονομάζεται γραμμική εξίσωση με δύο αγνώστους.
Μέθοδος Πεπερασμένων Στοιχείων
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
Επιπρόσθετες Ασκήσεις στην Μαθηματική Επαγωγή. Να δειχθεί ότι: 1*2+2*3+…+n(n+1)=[n(n+1)(n+2)]/3, ∀ n≥1. Άσκηση 1.
Κοζαλάκης Ευστάθιος ΠΕ03
Βάσεις Δεδομένων Ευαγγελία Πιτουρά1 Συναρτησιακές Εξαρτήσεις.
Μελέτη Δ.Ε. με χρήση του Mathematica
Επίλυση Διακριτών Γραμμικών Συστημάτων Νικόλαος Καραμπετάκης Επίκουρος Καθηγητής Τμήμα Μαθηματικών, Α.Π.Θ.
Ενότητα Α3: Ομοιότητα και διαστατική ανάλυση
Διάλεξη 14: Εισαγωγή στη ροή ρευστών
Μετασχηματισμός Fourier
Ενότητα 8η: Η ΕΛΑΣΤΙΚΗ ΓΡΑΜΜΗ
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των.
5.1 Παραμορφώσεις, Τροπές, Στροφές Το διάνυσμα της μετατόπισης: Θλίψη: Η τροπή ε -1, γιατί δε μπορούμε να κοντύνουμε ένα σώμα περισσότερο από το ίδιο του.
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ.
Β' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΣΤΟ ΕΠΙΠΕΔΟ Mπανανής Νικόλαος Στρούβαλη Παρασκευή.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ (Κ105) ΚΛΕΑΝΘΗΣ ΣΥΡΑΚΟΥΛΗΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΔΕ.
ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 3η Μετασχηματισμός Fourier.
Τοπικά ακρότατα Τοπικό μέγιστο –Τοπικό ελάχιστο..
Κλασσική Μηχανική Ενότητα 2: Μονοδιάστατες Κινήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 4η Δειγματοληψία.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
Συμπληρωματική Πυκνότητα Ελαστικής Ενέργειας Συμπληρωματικό Εξωτερικό Έργο W: Κανονικό έργο Τελικές δυνάμεις Ρ, τελικές ροπές Μ, ολικές μετατοπίσεις δ.
Συστήματα Αυτομάτου Ελέγχου II
Κεφάλαιο 8 Μέθοδοι ανάλυσης κυκλωμάτων
Θεωρία Σημάτων και Συστημάτων 2013
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES
F(x,y,y΄, y΄΄, y΄΄΄,y΄΄΄΄, …, y(n)) = 0
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ Democritus University of Thrace Department of Production.
Κλασσική Μηχανική Ενότητα 8: ΟΙ ΕΞΙΣΩΣΕΙΣ LAGRANGE
Μετασχηματισμοί 3Δ.
Μετασχηματισμός Laplace συνέχεια
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(9)
με σταθερούς συντελεστές
Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ Democritus University of Thrace Department of Production.
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Κεφάλαιο 3 Ασαφείς Συνεπαγωγές
Επαγγελματική κομψότητα...
Η ΕΞΙΣΩΣΗ.
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β΄ ΛΥΚΕΙΟΥ
Αρχή συστήματος συντεταγμένων: Το σημείο 0,0,0 (x, y, z)
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ - ΑΓΩΓΙΜΟΤΗΤΑ
F(x,y(x),y΄(x), y΄΄(x), y΄΄΄(x), …, y(n)(x)) = 0
3. ακριβείς δ.ε. 1ης τάξης.
2. ομογενείς δ.ε. 1ης τάξης ως προς τις μεταβλητές τους.
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ Democritus University of Thrace Department of Production.
Διαφορική εξίσωση Riccati.
(χωριζόμενων μεταβλητών, γραμμικές 1ης τάξης)
Μεταγράφημα παρουσίασης:

Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης Γενική μορφή δ.ε. τάξης ανώτερης της πρώτης F(x,y,y΄,y΄΄ ,…,y(η)) = 0

4. Διαφορικές εξισώσεις στις οποίες λείπει το x Είναι της μορφής F(y,y΄,y΄΄,y΄΄΄,…,y(η)) = 0 (IΙI) Επίλυση: Θέτουμε y΄=z, τότε δηλαδή, η παράγωγος 2ης τάξης της y είναι συνάρτηση του z και της παραγώγου 1ης τάξης του z ως προς y

Υπολογίζουμε την παράγωγο 3ης τάξης του y Παραγωγίζουμε ως προς x την σύνθετη συνάρτηση (dz/dx) των x,y Παραγωγίζουμε ως προς x την σύνθετη συνάρτηση z των x και y

τελικά, δηλαδή, η παράγωγος 3ης τάξης της y είναι συνάρτηση του z, της παραγώγου 2ης τάξης του z ως προς y και της παραγώγου 1ης τάξης του z ως προς y Συμπέρασμα: η παράγωγος 3ης τάξης της y εκφράζεται συναρτήσει των παραγώγων του z ως προς y κατά μια τάξη μικρότερη !!  συνεχίζοντας την ίδια διαδικασία καταλήγουμε στην μορφή, G(y,z,z΄,z΄΄ ,…,z(n-1))=0 της οποίας η τάξη είναι κατά μονάδα μικρότερη της τάξης της αρχικής δ.ε.

ΑΣΚΗΣΗ Να λυθεί η δ.ε. y(y-1)y΄΄ + (y΄)2 = 0. Λύση: Παρατηρούμε ότι y(y-1)y΄΄ + (y΄)2 = 0  F(y,y΄,y΄΄)=0 Είναι μια δ.ε. 2ης τάξης στην οποία λείπει το x ! Θέτουμε, y΄= z, όπου η z είναι σύνθετη συνάρτηση των x και y και η παράγωγος 2ης τάξης της y γίνεται: Η δ.ε. γίνεται, Υποθέτουμε ότι z0, δηλαδή, dy/dx  0, δηλαδή, yc, όπου cR. Πράγματι, αν y=c, τότε y΄=0=y΄΄ και η δ.ε. δεν έχει νόημα!

χωριζόμενων μεταβλητών Η δ.ε. ισοδύναμα γράφεται, Υποθέσαμε πάλι ότι y(1-y)z0, διότι αν y=0 ή y=1, τότε η δ.ε. δεν έχει νόημα! Στη συνέχεια ολοκληρώνουμε και τα δύο μέλη και έχουμε, χωριζόμενων μεταβλητών

και η δ.ε. ισοδύναμα γράφεται, Υποθέτουμε ότι z(1-y/y)>0 Γενική λύση της δ.ε.

Διερεύνηση : Υποθέσαμε ότι, z(1-y/y) >0 Διερεύνηση : Υποθέσαμε ότι, z(1-y/y) >0. Στην αντίθετη περίπτωση, αν z(1-y/y)<0, τότε,

Διερεύνηση : z(1-y/y) >0 y=0 x

5. Ομογενείς διαφορικές εξισώσεις Μία διαφορική εξίσωση τάξης ανώτερης της πρώτης F(x,y,y΄,y΄΄,…,y(n))=0 (Ι) λέγεται ομογενής ως προς y,y΄,…y(n) αν ικανοποιείται η σχέση: F(x,λy,λy΄,λy΄΄,…,λy(n))=λμF(x,y,y΄,y΄΄,…,y(n)) Τότε, η δ.ε. (Ι) παίρνει την μορφή και για να την επιλύσουμε θέτουμε τότε, Παραγωγίζοντας στη συνέχεια την πρώτη παράγωγο έχουμε:

με όμοιο τρόπο έχουμε, κ.λ.π. τότε, δηλαδή, προκύπτει μια δ.ε. στην οποία λείπει το z !

Αν στη συνέχεια θέσουμε, z΄=ω, τότε προκύπτει μια διαφορική εξίσωση H(x,ω,ω΄ω΄΄ , …, ω(η-1))=0 της οποίας η τάξη είναι κατά μονάδα μικρότερη της τάξης της αρχικής και συνεπώς η λύση της είναι απλούστερη !!

F(x,y,y΄,y΄΄)= xyy΄΄ - x(y΄)2 –yy΄ και επιπλέον Λύση: Παρατηρούμε ότι F(x,y,y΄,y΄΄)= xyy΄΄ - x(y΄)2 –yy΄ και επιπλέον F(x,λy,λy΄,λy΄΄)=x(λy)(λy΄΄)-x(λy΄)2-(λy)(λy΄)= =λ2 [(x yy΄΄)-x(y΄)2-yy΄]= λ2 F(x,y,y΄,y΄΄) και συνεπώς η δ.ε. είναι μια ομογενής δ.ε. 2ης τάξης ως προς y,y΄,y΄΄ Υποθέτοντας ότι προφανώς ισχύει y0, διαιρούμε τα μέλη της δ.ε. με y2 , δηλαδή, Θέτουμε,

χωριζόμενων μεταβλητών τότε, σύμφωνα με τα παραπάνω και η δ.ε. μετασχηματίζεται ως εξής: Στη συνέχεια θέτουμε, χωριζόμενων μεταβλητών

αντίστροφα, επιπλέον, γενική λύση