Συστήματα Αυτομάτου Ελέγχου II

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ενότητα: Αυτόματος Έλεγχος Συστημάτων Κίνησης
Advertisements

Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο
Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο
Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ
Ενότητα: Ελεγκτές - Controllers
Υδραυλικά & Πνευματικά ΣΑΕ
Υδραυλικά & Πνευματικά ΣΑΕ
Εφαρμοσμένη Θερμοδυναμική
Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο
Ενότητα 3: Μικροϋπολογιστές Ιωάννης Έλληνας Τμήμα Η/ΥΣ
Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο Ενότητα 5: Χαρακτηριστική Βραχυκύκλωσης Δύγχρονης Γεννήτριας Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ ΕΛΛΗΝΙΚΗ.
Ψηφιακή Επεξεργασία Εικόνας Ενότητα 7 : Πρότυπο συμπίεσης JPEG Ιωάννης Έλληνας Τμήμα Η/ΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού.
Ψηφιακή Επεξεργασία Εικόνας Ενότητα 8 : Πρότυπο συμπίεσης JPEG2000 Ιωάννης Έλληνας Τμήμα Η/ΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού.
Ανθρωπολογία του Θεάτρου Ενότητα 4 η : Βασικές αρχές της Τέχνης του Ηθοποιού Γιώργος Σαμπατακάκης, M.Phil. (Καίμπρητζ) – Ph.D. (Λονδίνο) Τμήμα Θεατρικών.
Υδραυλικά & Πνευματικά ΣΑΕ Ενότητα # 1: Πνευματικά Συστήματα Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκπαιδευτικά Προγράμματα με Χρήση Η/Υ ΙΙ Θέμα «παιγνίδια» (website address) Διδάσκουσα: Καθηγήτρια Τζένη.
Υδραυλικά & Πνευματικά ΣΑΕ Ενότητα # 8: Προηγμένα Πνευματικά Συστήματα Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό.
Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #4: Μαθηματική εξομοίωση συστημάτων στο επίπεδο της συχνότητας – Μετασχηματισμός Laplace και εφαρμογές σε ηλεκτρικά.
Υψηλές Τάσεις Ενότητα 3: Θεωρία Διάσπασης SF 6 και Μειγμάτων Αερίων Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο.
Στοιχεία Μηχανών ΙΙ Ενότητα 3: Μετωπικοί τροχοί με κεκλιμένη οδόντωση – Κωνικοί οδοντωτοί τροχοί Δρ Α. Δ. Τσολάκης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ.
Τμήμα Τεχνολόγων Γεωπόνων Τίτλος Μαθήματος: ΚΑΛΛΩΠΙΣΤΙΚΑ ΔΕΝΤΡΑ ΚΑΙ ΘΑΜΝΟΙ Ενότητα 12: Οδηγίες δημιουργίας φυτολογίου Γρηγόριος Βάρρας Αν. Καθηγητής Άρτα,
Συστήματα Αυτομάτου Ελέγχου II
Συστήματα Αυτομάτου Ελέγχου ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.
Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου
Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.
Συστήματα Αυτομάτου Ελέγχου II
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Μηχανική των υλικών Μεταβολή όγκου λόγω παραμόρφωσης
Θερμοδυναμική Ενότητα 3 : Ιδανικά Αέρια Δρ Γεώργιος Αλέξης
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(9)
Ενότητα # 8: ΡΕΑΛΙΣΜΟΣ Αιλιάνα Μαρτίνη Τμήμα Ιστορίας
Υδραυλικά & Πνευματικά ΣΑΕ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.
Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου
ΦΡΟΝΤΙΣΤΗΡΙΟ: ΘΕΡΜΙΚΕΣ ΤΑΣΕΙΣ
Στοιχεία Μηχανών ΙΙ Ενότητα 4: Πλανητικοί Μηχανισμοί Δρ Α. Δ. Τσολάκης
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΕΠΤΟΤΟΙΧΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(3)
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ ΦΡΟΝΤΙΣΤΗΡΙΟ: ΔΙΚΤΥΩΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 4: Προσδιορισμός των Παραμέτρων του Ισοδύναμου.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ηλεκτρικές Μηχανές ΙΙ Ενότητα 5: Κανονικοποιημένες Καμπύλες
Ενότητα # 2: Αιλιάνα Μαρτίνη Τμήμα Ιστορίας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(7)
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(4)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΕνΟτητα # 8: Ms Word V CLAUDIA BOETTCHER ΤμΗμα ΙστορΙαΣ
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ ΦΡΟΝΤΙΣΤΗΡΙΟ: ΔΙΚΤΥΩΜΑΤΑ
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(5)
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(10)
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Μεταγράφημα παρουσίασης:

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #9: Λύση Εξισώσεων Εσωτερικής Κατάστασης με Χρήση Μετασχηματισμού Laplace Δημήτριος Δημογιαννόπουλος Τμήμα Μηχανικών Αυτοματισμού Τ.Ε

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σκοποί Ενότητας Υπολογισμός εσωτερικών σημάτων συστήματος εκφρασμένου στο χώρο κατάστασης. Χρήση μετασχηματισμού Laplace σε μητρωικές εξισώσεις για υπολογισμό αποκρίσεων. 4

Περιεχόμενα Ενότητας Υπολογισμός απόκρισης από τις εξισώσεις κατάστασης με μετασχηματισμό Laplace Παράδειγμα

Υπολογισμός Απόκρισης από τις Εξισώσεις Κατάστασης Μετασχηματισμός LAPLACE

Υπολογισμός Απόκρισης από τις Εξισώσεις Κατάστασης - Μετασχηματισμός Laplace - 1 Από τα προηγούμενα (ενότητα 8) δύο μέρη τόσο στο διάνυσμα κατάστασης X(s) όσο και στη μεταβλητή εξόδου: Το ελεύθερο μέρος της απόκρισης Xα(s) ή Yα(s) που οφείλεται στην αρχική συνθήκη x(0): (1)

Υπολογισμός Απόκρισης από τις Εξισώσεις Κατάστασης - Μετασχηματισμός Laplace - 2 Το ελεύθερο μέρος της απόκρισης Xα(s) ή Yα(s) που οφείλεται στην αρχική συνθήκη x(0): (1) και το εξαναγκασμένο μέρος της απόκρισης Xε(s) ή Yε(s) που οφείλεται στην είσοδο u(t): (2)

Υπολογισμός Απόκρισης από τις Εξισώσεις Κατάστασης - Μετασχηματισμός Laplace - 3 Για το ελεύθερο κομμάτι της απόκρισης ισχύει ότι: (3) με το μητρώο Φ(t) να ονομάζεται μητρώο μετάβασης. Συγκρίνοντας την (3) με την (2) προκύπτει λοιπόν ότι: (4) Άρα με χρήση της (4) η ολική λύση των εξισώσεων κατάστασης: (5)

Παράδειγμα

Παράδειγμα (1) Παράδειγμα: Έστω το κύκλωμα RL-RL, να βρεθούν η ελεύθερη και η εξαναγκασμένη απόκριση σε είσοδο u(t)=1.

Παράδειγμα (2) Παράδειγμα: Έστω το κύκλωμα RL-RL, να βρεθούν η ελεύθερη και η εξαναγκασμένη απόκριση σε είσοδο u(t)=1. Οι εξισώσεις, από την προηγούμενη ενότητα είναι:

Παράδειγμα (3) Το μητρώο Φ(s) υπολογίζεται ως εξής: (6)

Παράδειγμα (4) Οπότε και η Xε(s) και τελικά Xε(t) υπολογίζεται αρκετά εύκολα: (7)

Παράδειγμα (5) Πρέπει λοιπόν να γίνει ανάλυση σε απλά κλάσματα για κάθε στοιχείο του διανύσματος στην (7): Οπότε και με χρήση πινάκων με αντίστροφο μετασχηματισμό Laplace θα έχουμε: (8)

Παράδειγμα (6) (8) και εφόσον (9)

Παράδειγμα (7) Αν η αρχική συνθήκη x(0)=[1 1]T με χρήση των (1), (6) το ελεύθερο μέρος της απόκρισης θα είναι: Οπότε με ανάλυση σε απλά κλάσματα και χρήση πινάκων με αντίστροφο μετασχηματισμό Laplace (10)

Παράδειγμα (8) (37) και το ελεύθερο μέρος της εξόδου (προφανώς με χρήση u(t)=0!) θα είναι

Τέλος Ενότητας