Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
Advertisements

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ.
Τι είναι ο υπολογιστής; Τι είναι ο προγραμματισμός
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA.
ΓΡΗΓΟΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Laplace.
Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
Εισαγωγή στην Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
Σχεδίαση με το Γεωμετρικό Τόπο Ριζών
Προσεγγιστικοί Αλγόριθμοι
Γ΄ κατεύθυνση Προβληματισμοί για τους ορισμούς, θεωρήματα, παραδείγματα και τις ασκήσεις του 3ου κεφαλαίου
Γιάννης Σταματίου Τεχνικές αντιστροφής γεννητριών συναρτήσεων Webcast 7.
Η αλληλουχία των ενεργειών δεν είναι πάντα μία και μοναδική!!!
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Παχατουρίδη Σάββα(676) Επιβλέπων: Σ
Αριθμητικές Μέθοδοι Βελτιστοποίησης Θεωρία & Λογισμικό Τμήμα Πληροφορικής - Πανεπιστήμιο Ιωαννίνων Ι. Η. Λαγαρής.
Ο Μετασχηματισμός Laplace και ο Μετασχηματισμός Ζ
Ευστάθεια Συστημάτων Αυτομάτου Ελέγχου:
Κεφάλαιο 7: O Μετασχηματισμός Laplace
Σέρρες,Ιούνιος 2009 Τίτλος: Αυτόματος έλεγχος στο Scilab: Ανάπτυξη πακέτου για εύρωστο έλεγχο. Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα Επιβλέπων Καθηγητής.
Διάλεξη 9η: Εφαρμογή της μεθόδου Simplex στο γραμμικό προγραμματισμό κατά τη μεγιστοποίηση Μέθοδος Simplex 1.Όταν υπάρχουν μέχρι πέντε κλάδοι παραγωγής.
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 : Θεώρημα Μέγιστης Ισχύος. Θεώρημα Μέγιστης Ισχύος Μπορούμε να υπολογίσουμε ποια είναι η αντίσταση που πρέπει να συνδέσουμε με μια.
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Προσαρμοστικοί Αλγόριθμοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδρομικός.
ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Ανάλυση Συστημάτων Αυτομάτου Ελέγχου: Διαγράμματα Nyquist & Nichols ΚΕΣ 01 – Αυτόματος Έλεγχος.
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 4) 1 Από κοινού κατανομή πολλών ΤΜ Ορίζεται ως από κοινού συνάρτηση κατανομής F(x 1, …, x n ) n τυχαίων.
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
Κεφάλαιο 10 – Υποπρογράμματα
Κοζαλάκης Ευστάθιος ΠΕ03
ΑΛΓΕΒΡΟ - ΠΟΛΥΩΝΥΜΙΚΕΣ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ Διδακτορική διατριβή Σταύρος Δ. Βολογιαννίδης URL:
Επιστημονικός Υπολογισμός Ι
Άρτεμις Κωσταρίγκα Επίβλεψη: Ν. Καραμπετάκης ΙΟΥΝΙΟΣ 2005
ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΤΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ Ακαδημαϊκό Έτος Πέμπτη, 25 Ιουνίου η Εβδομάδα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών “Θεωρητική Πληροφορική & Θεωρία Συστημάτων και Ελέγχου” Ανάπτυξη διαδραστικού περιβάλλοντος (GUI)
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Πατσαλίδου Κυριακή
ΚΕΦΑΛΑΙΟ Το αλφάβητο της ΓΛΩΣΣΑΣ
Ενότητα: Συστήματα Ελέγχου Κίνησης
Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Ροές Δεδομένων (3 ο Μέρος)
Μετασχηματισμός Fourier
Π ΑΝΕΠΙΣΤΗΜΙΟ Δ ΥΤΙΚΗΣ Μ ΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Θεωρία Σημάτων και Συστημάτων 2013 Μάθημα 3 ο Δ. Γ. Τσαλικάκης.
Μετασχηματισμός Fourier Διακριτού Χρόνου Δειγματοληψία
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Μεταβατική απόκριση ενός συστήματος δεύτερης τάξης Σχήμα 5.7 σελίδα 370.
ΗΛΕΚΤΡΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΗΣ.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 3η Μετασχηματισμός Fourier.
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΤΕΙ Αθήνας: Σχολή ΤΕΦ: Τμήμα Ναυπηγικής Εφαρμογές Η/Υ στην Ναυπηγική ΙΙ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ NA0703C39 Εξάμηνο Ζ’ Διδάσκων Κωνσταντίνος Β. Κώστας Παρουσίαση.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 4η Δειγματοληψία.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
Συμπληρωματική Πυκνότητα Ελαστικής Ενέργειας Συμπληρωματικό Εξωτερικό Έργο W: Κανονικό έργο Τελικές δυνάμεις Ρ, τελικές ροπές Μ, ολικές μετατοπίσεις δ.
ΜΕΘΟΔΟΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ - ΑΣΥΜΜΕΤΡΙΑΣ - ΚΥΡΤΩΣΕΩΣ
Κεφάλαιο 8 Μέθοδοι ανάλυσης κυκλωμάτων
Δομή επιλογής Πολλές φορές για να λυθεί ένα πρόβλημα πρέπει να ελεγχθεί αν ισχύει κάποια συνθήκη Παράδειγμα 2: Να διαβαστεί ένας αριθμός και να επιστραφεί.
Θεωρία Σημάτων και Συστημάτων 2013
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι
ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΒΛΗΜΑ ΑΛΓΟΡΙΘΜΟΣ ΛΥΣΗ
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής
Μέγιστη ροή Κατευθυνόμενο γράφημα 12 Συνάρτηση χωρητικότητας
ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΓΡΑΜΜΑΤΩΝ BODE ΜΕΤΡΟΥ ΚΑΙ ΦΑΣΗΣ
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
Ψηφιακός Έλεγχος διάλεξη Παρατηρητές Ψηφιακός Έλεγχος.
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ανάπτυξη εκπαιδευτικής εφαρμογής.
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Λογικές πύλες και υλοποίηση άλγεβρας Boole ΑΡΒΑΝΙΤΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ(ΣΥΝΕΡΓΑΤΕΣ):ΔΗΜΗΤΡΙΟΣ ΔΑΒΟΣ- ΜΑΡΙΑ ΕΙΡΗΝΗ KAΛΙΑΤΣΗ-ΦΡΑΤΖΕΣΚΟΣ ΒΟΛΤΕΡΙΝΟΣ… ΕΠΠΑΙΚ ΑΡΓΟΥΣ.
Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Εικόνα 2.1: Το περιβάλλον της MicroWorlds Pro.
Μη Γραμμικός Προγραμματισμός
Μεταγράφημα παρουσίασης:

Τίτλος: Αυτόματος έλεγχος στο Scilab: Ανάπτυξη πακέτου για εύρωστο έλεγχο. Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα Επιβλέπων Καθηγητής : Σταύρος Βολογιαννίδης Σέρρες,Ιούνιος 2009

Πρόλογος Τα περισσότερα συστήματα προκύπτουν από μοντελοποίηση. Όλα τα μοντέλα έχουν παραμέτρους που από την φύση τους αλλάζουν. (π.χ. ένα αεροπλάνο έχει διαφορετική συμπεριφορά όταν είναι γεμάτο με καύσιμα και διαφορετική όταν είναι χωρίς καύσιμα) Έλεγχο ευστάθειας στα συστήματα. Η ευστάθεια είναι βασική για την ανάλυση πολλών προβλημάτων αυτομάτου ελέγχου. Όταν οι παράμετροι ενός μοντέλου σε μορφή συνάρτησης μεταφοράς είναι γνωστοί η ευστάθεια μπορεί να ελεγχθεί από : ρίζες του πολυωνύμου του παρανομαστή της συνάρτησης μεταφοράς. Κριτήριο Routh Κριτήριο Hurwitz Η δυσκολία παρουσιάζεται όταν δεν γνωρίζουμε τους συντελεστές δηλαδή το μοντέλο παρουσιάζει αβεβαιότητα. Σέρρες,Ιούνιος 2009

Στόχοι της εργασίας Συνάρτηση μεταφοράς μιας εισόδου – μιας εξόδου με αβεβαιότητα. Πολυώνυμα με αβεβαιότητα. Συντελεστές σε διάστημα. Μιγαδικοί συντελεστές σε διάστημα. Ίδια αβεβαιότητα σε διαφορετικούς συντελεστές. Εύρωστη ευστάθεια πολυωνύμων . Θεώρημα Kharitonov (1978). Συνθήκη αποφυγής του μηδενός. Απλοποιημένο Θεώρημα Kharitonov (1987). Θεώρημα Barmish (1989). Μέγιστο όριο ευστάθειας των Fu και Barmish (1988). Μέθοδος Overbounding. Θεώρημα Tsypkin και Polyak (1991). Υλοποίηση κάποιων βασικών εργαλείων για την ανάλυση ευστάθειας πολυωνύμων με αβεβαιότητα με την βοήθεια του προγράμματος SCILAB. Το Scilab είναι ένα απλό περιβάλλον προγραμματισμού που επιτρέπει την εύκολη χρήση μαθηματικών συναρτήσεων, στατιστικών μεθόδων και πολλών άλλων αλγορίθμων αριθμητικής ανάλυσης. Από το 1994 ο κώδικας είναι ελεύθερος και μπορεί κάποιος να το βρει στο www.scilab.org. Σέρρες,Ιούνιος 2009

Συναρτήσεις Μεταφοράς Συνάρτηση μεταφοράς ΣΑΕ μιας εισόδου-μιας εξόδου: Μια συνάρτηση μεταφοράς που περιέχει μια επιπλέον μεταβλητή q εκτός από την μεταβλητή s λέμε ότι περιέχει αβεβαιότητα. Συνάρτηση μεταφοράς με αβεβαιότητα: όπου και είναι αβέβαια πολυώνυμα τα οποία ορίζονται ως εξής: και . Σέρρες,Ιούνιος 2009

Οικογένειες-Υποοικογένειες Οικογένειες αβέβαιων πολυωνύμων ορίζονται : όπου είναι το αβέβαιο όριο. Υποοικογένειες αβέβαιων πολυώνυμων: όπου και είναι τα αβέβαια όρια. Το αβέβαιο όριο όπου και Ευστάθεια:ένα πολυώνυμο p(s) είναι ευσταθές όταν οι ρίζες του είναι στο αριστερό μιγαδικό ημιεπιπεδο. Εύρωστη ευστάθεια:Μια οικογένεια πολυωνύμων είναι εύρωστα ευσταθής εάν για όλα τα οι ρίζες των p(s,q) βρίσκονται στο αριστερό μιγαδικό ημιεπιπεδο. Σέρρες,Ιούνιος 2009

Μέγιστο Ευσταθές Διάστημα Μέγιστο ευσταθές διάστημα . Έχουμε το αβέβαιο πολυώνυμο Το πολυώνυμο είναι ευσταθές Ισχύει Τότε τα όρια του διαστήματος ορίζονται όπου είναι η μέγιστη πραγματική ιδιοτιμή και η ελάχιστη πραγματική ιδιοτιμή, ενώ με ορίζεται ο πίνακας Hurwitz ενός πολυωνύμου. Ο πίνακας Hurwitz ενός πολυωνύμου ορίζεται με Σέρρες,Ιούνιος 2009

Παράδειγμα:Μέγιστο Ευσταθές Διάστημα Μέγιστο Ευσταθές Διάστημα με βάση τις ιδιοτιμές Δίνονται τα πολυώνυμα και . Το είναι ευσταθές. Ισχύει Στην γραμμή εντολών του Scilab πληκτρολογούμε: s=poly(0,'s') // ορίζουμε την μεταβλητή s pο=s^4+10*s^3+35*s^2+50*s+24 // ορίζουμε το πολυώνυμο po p1=7*s^3+5*s^2+3*s+8 // ορίζουμε το πολυώνυμο p1 maximal_interval (po,p1) // καλούμε την συνάρτηση Εκτελώντας την συνάρτηση προκύπτει ότι και Σέρρες,Ιούνιος 2009

Μελέτη ευστάθειας πινάκων Πίνακες: Αβέβαιος πίνακας: Οικογένεια πινάκων: Υποοικογένειες πινάκων: Όρια πινάκων: Με βάση των πράξεων Kronecker το μέγιστο ευσταθές διάστημα ορίζετε : όπου Α0 και Α1 τετραγωνικοί πίνακες. Σέρρες,Ιούνιος 2009

Παράδειγμα:Μέγιστο Ευσταθές Διάστημα Μέγιστο Ευσταθές Διάστημα με βάση τις πράξεις Kronecher Δίνονται οι πίνακες Στην γραμμή εντολών του Scilab πληκτρολογούμε: A1=[7 5 17 6;16 21 6 3;8 14 18 9;22 3 8 9] // ορίζουμε τον πίνακα Α1 Ao=[27 3 11 9;9 31 16 2;9 7 8 19;6 11 23 4] // ορίζουμε τον πίνακα Αο qmax_qmin(Ao,A1) // καλούμε την συνάρτηση Εκτελώντας την συνάρτηση προκύπτει ότι και Σέρρες,Ιούνιος 2009

Βασικοί ορισμοί Βασικοί ορισμοί: Μια οικογένεια πολυωνύμων λέγεται ότι είναι σταθερού βαθμού αν ισχύει η εξής σχέση για κάθε . Το πολυώνυμο έχει μια ανεξάρτητη αβέβαιη δομή εάν κάθε q από τα qi υπάρχει σε ένα μόνο συντελεστή του πολυωνύμου. π.χ. Μια οικογένεια πολυωνύμων λέγεται ότι είναι πολυωνυμική οικογένεια με συντελεστές σε διάστημα εάν το έχει μια ανεξάρτητη αβέβαιη δομή σε κάθε συντελεστή. Η οικογένεια που έχει συντελεστές σε διάστημα δίνεται από τον τύπο Σέρρες,Ιούνιος 2009

Ευστάθεια πολυωνύμων: Θεώρημα Kharitonov Με βάση τον τύπο της πολυωνυμικής οικογένειας τα τέσσερα πολυώνυμα Kharitonov είναι: To 1987 οι Anderson, Jury και Mansour συμπέραναν ότι: Μια πολυωνυμική οικογένεια Ρ σταθερού βαθμού n=3 με συντελεστές σε διάστημα και είναι εύρωστα ευσταθή αν και μόνο αν το πολυώνυμο Kharitonov Κ3(s) είναι ευσταθές. Σέρρες,Ιούνιος 2009

Παράδειγμα: Θεώρημα Kharitonov Δίνεται το πολυώνυμο: Στην γραμμή εντολών του Scilab πληκτρολογούμε: n=[0.25,0.75,2.75,0.25;1.25,1.25,3.25,1.25] //ορίζουμε τον πίνακα n. kharitonov_polynomials(n) // καλούμε την συνάρτηση k_isstable(n) // συνάρτηση ελέγχου ευστάθειας Εκτελώντας τις παραπάνω εντολές τέσσερα πολυώνυμα Kharitonov που προκύπτουν είναι τα εξής τα οποία είναι ευσταθή άρα και η αρχική οικογένεια είναι εύρωστα ευσταθής. Σέρρες,Ιούνιος 2009

Ευστάθεια πολυωνύμων:Θεώρημα Kharitonov για μιγαδικούς συντελεστές Σέρρες,Ιούνιος 2009

Παράδειγμα: Θεώρημα Kharitonov για μιγαδικούς συντελεστές Δίνεται το πολυώνυμο: Στην γραμμή εντολών του Scilab πληκτρολογούμε: n=[7+%i,5+3*%i,3+5*%i,1+7*%i;8+2*%i,6+4*%i,4+6*%i,2+8*%i] // ορίζουμε τον πίνακα n kharitonov_polynomials(n) // καλούμε την συνάρτηση k_isstable(n) //συνάρτηση ελέγχου ευστάθειας Εκτελώντας τις παραπάνω εντολές τα οχτώ πολυώνυμα Kharitonov που προκύπτουν είναι τα εξής : τα οποία δεν είναι ευσταθή, άρα και η αρχική οικογένεια δεν είναι ευσταθή. Σέρρες,Ιούνιος 2009

Ευστάθεια πολυωνύμων: Συνθήκη αποφυγής του μηδενός Συνθήκη αποφυγής του μηδενός. Μια πολυωνυμική οικογένεια σταθερού βαθμού με συντελεστές σε διάστημα η οποία περιέχει ένα ευσταθές μέλος είναι εύρωστα ευσταθής αν και μόνο αν το μηδέν δεν υπάρχει στο εσωτερικό κανενός τετραγώνου Kharitonov για όλες τις συχνότητες . Τετράγωνο Kharitonov Όλες οι κορυφές ενός τετραγώνου Kharitonov προκύπτουν από ένα μοναδικό πολυώνυμο Kharitonov Σέρρες,Ιούνιος 2009

Παράδειγμα: Συνθήκη αποφυγής του μηδενός Συνθήκη Αποφυγής του μηδενός. Δίνεται το πολυώνυμο Στην γραμμή εντολών του Scilab πληκτρολογούμε: n=[0.45 1.95 2.95 5.95 3.95 3.95 1;0.55 2.05 3.05 6.05 4.05 4.05 1] //ορίζουμε τον πίνακα n Kharitonov_poly(n) // η συνάρτηση υπολογίζει τα 4 πολυώνυμα Kharitonov k_rectangle(n,0.2,5.1023) // η συνάρτηση σχεδιάζει το τετράγωνο Εκτελώντας τις παραπάνω εντολές προκύπτει τo διάγραμμα Η συχνότητα ωc υπολογίζεται από τον τύπο Σέρρες,Ιούνιος 2009

Ευστάθεια πολυωνύμων Θεώρημα Barmish Μια πολυωνυμική οικογένεια σταθερού βαθμού Ρ με συντελεστές σε διάστημα η οποία περιέχει ένα ευσταθές μέλος και τις αντιστοιχούν τα πολυώνυμα Kharitonov Κ1(s) ,Κ2(s), Κ3(s) και Κ4(s).Θεωρώντας την συνάρτηση Προκύπτει ότι η πολυωνυμική οικογένεια είναι εύρωστα ευσταθής αν και μόνο αν για όλες τις συχνότητες . Παράδειγμα για το Θεώρημα Barmish Έχουμε την πολυωνυμική οικογένεια για και η ευστάθεια επιβεβαιώνεται .Τα τέσσερα πολυώνυμα Kharitonov που προκύπτουν είναι: Σέρρες,Ιούνιος 2009

Παράδειγμα:Θεώρημα Barmish Όσο η συνάρτηση είναι θετική για η οικογένεια είναι εύρωστα ευσταθή. Σέρρες,Ιούνιος 2009

Ευστάθεια πολυωνύμων:Μέγιστο όριο ευστάθειας Μέγιστο όριο ευστάθειας. Το 1988 οι Fu και Barmish κατέληξαν ότι υπάρχει ένα μέγιστο για το οποίο όλα τα μέλη της οικογένειας είναι ευσταθή. Θεωρούμε ότι η οικογένεια έχει ευσταθές το και μεταβλητό αβέβαιο όριο και ορίζεται ως εξής: Για να υπολογίσουμε το θα πρέπει με βάση το θεώρημα του Kharitonov να μετατρέψουμε το πρόβλημα του εύρωστου ορίου σε τέσσερα διαφορετικά προβλήματα για τα αβέβαια πολυώνυμα. Με βάση το θεώρημα των ιδιοτιμών έχουμε: Σέρρες,Ιούνιος 2009

Παράδειγμα:Μέγιστο όριο ευστάθειας Μέγιστο όριο ευστάθειας. Δίνεται τα πολυώνυμα: και Στην γραμμή εντολών του Scilab πληκτρολογούμε: n=[-0.25 -2.75 -0.75 -1.25; 0.25 2.75 0.75 1.25] //ορίζουμε τον πίνακα s=poly(0,’s’) //ορίζουμε την μεταβλητή s p0=s^4+10*s^3+35*s^2+50*s+24 // ορίζουμε το πολυώνυμο ρ0 rmax(n,p0) // καλούμε την συνάρτηση Εκτελώντας τις παραπάνω εντολές βρίσκουμε ότι το για το οποίο η οικογένεια είναι εύρωστα ευσταθής Σέρρες,Ιούνιος 2009

Ευστάθεια πολυωνύμων: Μέθοδος Overbounding. Αναφέρεται σε πολυώνυμα που έχουν αβεβαιότητα σε διαφορετικούς συντελεστές. Θεωρούμε το αβέβαιο πολυώνυμο με αβέβαιο όριο Q. Για να μετατρέψουμε την οικογένεια αυτή σε οικογένεια με συντελεστές σε διάστημα τα όρια των συντελεστών του πολυωνύμου ορίζονται ως: και . Η πολυωνυμική οικογένεια με βάση τα όρια που ορίσαμε παραπάνω μπορεί να περιγραφεί από τον τύπο Τα πολυώνυμα της οικογένειας περιέχονται στην .Άρα η εύρωστη ευστάθεια της συνεπάγεται την εύρωστη ευστάθεια της , χωρίς όμως να ισχύει το αντίστροφο. Σέρρες,Ιούνιος 2009

Παράδειγμα: Μέθοδος Overbounding. Θεωρούμε την πολυωνυμική οικογένεια όπου Τα νέα όρια είναι Η overbounding πολυωνυμική οικογένεια που προκύπτει είναι: Με βάση το θεώρημα του Kharitonov για την οικογένεια ,είναι εύκολο να επιβεβαιωθεί ότι και τα τέσσερα πολυώνυμα Kharitonov είναι ευσταθή. Από την εύρωστη ευστάθεια της καταλήγουμε ότι και η αρχική οικογένεια είναι ευσταθής . Σέρρες,Ιούνιος 2009

Παράδειγμα: Μέθοδος Overbounding. Θεωρούμε την ευσταθή πολυωνυμική οικογένεια με αβέβαιο όριο . Η overbounding οικογένεια που παράγεται από την Ρ είναι η Τα τέσσερα πολυώνυμα Kharitonov που προκύπτουν από την overbounding οικογένεια είναι τα εξής: Τα πολυώνυμα Κ2(s) και Κ3(s) δεν είναι ευσταθή άρα και η overbounding οικογένεια δεν είναι ευσταθή. Σέρρες,Ιούνιος 2009

Ευστάθεια πολυωνύμων: Θεώρημα Tsypkin και Polyak Θεωρούμε ότι η οικογένεια έχει ευσταθές και μεταβλητό αβέβαιο όριο και ορίζεται ως εξής: Θεωρούμε την συνάρτηση τότε εφαρμόζοντας την μέγιστη νόρμα στο προκύπτει ότι η οικογένεια είναι εύρωστα ευσταθής αν και μόνο αν και για όλες τις συχνότητες . Μια βασική εφαρμογή του θεωρήματος είναι να δούμε γραφικά για ποίο η οικογένεια είναι εύρωστα ευσταθή. Σέρρες,Ιούνιος 2009

Παράδειγμα: Θεώρημα Tsypkin και Polyak Έχουμε την πολυωνυμική οικογένεια με συντελεστές σε διάστημα η οποία έχει και .Η συνάρτηση που θα σχεδιαστεί είναι η με Σέρρες,Ιούνιος 2009

Επίλογος Μελετήσαμε Συναρτήσεις μεταφοράς μιας εισόδου –μιας εξόδου με αβεβαιότητα. Πολυώνυμα με αβεβαιότητα. Συντελεστές σε διάστημα. Μιγαδικοί συντελεστές σε διάστημα. Ίδια αβεβαιότητα σε διαφορετικούς συντελεστές. Εύρωστη ευστάθεια πολυωνύμων . Θεώρημα Kharitonov (1978a). Συνθήκη αποφυγής του μηδενός. Απλοποιημένο Θεώρημα Kharitonov. Θεώρημα Barmish (1989). Μέγιστο όριο των Fu και Barmish (1988). Μέθοδος Overbounding. Θεώρημα Tsypkin και Polyak (1991). Υλοποίηση κάποιων βασικών εργαλείων για την ανάλυση ευστάθειας πολυωνύμων με αβεβαιότητα με την βοήθεια του προγράμματος SCILAB. Σέρρες,Ιούνιος 2009