Υπολογιστική Ρευστομηχανική Ενότητα 4: Εξίσωση Διάχυσης Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Υδραυλικά & Πνευματικά ΣΑΕ
Advertisements

Υπολογιστική Ρευστομηχανική Ενότητα 3: Περιγραφή Αριθμητικών Μεθόδων Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Ανθρωπολογία του Θεάτρου Ενότητα 4 η : Βασικές αρχές της Τέχνης του Ηθοποιού Γιώργος Σαμπατακάκης, M.Phil. (Καίμπρητζ) – Ph.D. (Λονδίνο) Τμήμα Θεατρικών.
Υπολογιστική Ρευστομηχανική Ενότητα 5: Χρονικά Μεταβαλλόμενη Διάχυση Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκπαιδευτικά Προγράμματα με Χρήση Η/Υ ΙΙ Θέμα «παιγνίδια» (website address) Διδάσκουσα: Καθηγήτρια Τζένη.
Κλασσική Μηχανική Ενότητα 7: Η αρχή των δυνατών έργων. Η αρχή του D’ Alembert Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Κλασσική Μηχανική Ενότητα 5: Μη Αδρανειακά Συστήματα Αναφοράς Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Ειδικά Μαθηματικά Ενότητα 1: Εισαγωγικές Έννοιες-Ορισμοί Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Κλασσική Μηχανική Ενότητα 1: Εισαγωγικές Έννοιες-Ορισμοί Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Κλασσική Μηχανική Ενότητα 2: Μονοδιάστατες Κινήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Στοιχεία Μηχανών ΙΙ Ενότητα 3: Μετωπικοί τροχοί με κεκλιμένη οδόντωση – Κωνικοί οδοντωτοί τροχοί Δρ Α. Δ. Τσολάκης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ.
Τμήμα Τεχνολόγων Γεωπόνων Τίτλος Μαθήματος: ΚΑΛΛΩΠΙΣΤΙΚΑ ΔΕΝΤΡΑ ΚΑΙ ΘΑΜΝΟΙ Ενότητα 12: Οδηγίες δημιουργίας φυτολογίου Γρηγόριος Βάρρας Αν. Καθηγητής Άρτα,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Υπολογιστική Ρευστομηχανική
Κλασσική Μηχανική Ενότητα 8: ΟΙ ΕΞΙΣΩΣΕΙΣ LAGRANGE
Χρονικός Προγραμματισμός Έργων (Εργαστήριο)
Υπολογιστική Ρευστομηχανική
Διάλεξη 4: Εξίσωση διάχυσης
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(9)
Ενότητα # 8: ΡΕΑΛΙΣΜΟΣ Αιλιάνα Μαρτίνη Τμήμα Ιστορίας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΦΡΟΝΤΙΣΤΗΡΙΟ: ΘΕΡΜΙΚΕΣ ΤΑΣΕΙΣ
Στοιχεία Μηχανών ΙΙ Ενότητα 4: Πλανητικοί Μηχανισμοί Δρ Α. Δ. Τσολάκης
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΕΠΤΟΤΟΙΧΑ
Διαχείριση Κινδύνου Ενότητα 7: Παρακολούθηση Κινδύνων.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(3)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ ΦΡΟΝΤΙΣΤΗΡΙΟ: ΔΙΚΤΥΩΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Εισαγωγή στις εικαστικές τέχνες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Επιχειρησιακές Επικοινωνίες
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(7)
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(4)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΕνΟτητα # 8: Ms Word V CLAUDIA BOETTCHER ΤμΗμα ΙστορΙαΣ
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(5)
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(10)
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΕΠΙΦΑΝΕΙΑΚΗ ΚΑΤΕΡΓΑΣΙΑ ΜΕΤΑΛΛΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Μεταγράφημα παρουσίασης:

Υπολογιστική Ρευστομηχανική Ενότητα 4: Εξίσωση Διάχυσης Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σκοποί ενότητας Μόνιμη διάχυση σε δύο διαστάσεις Ισορροπία διακριτοποιημένων όρων Διακριτοποίηση Γραμμικοποίηση πηγών Τελική γραμμική εξίσωση

Μόνιμη διάχυση σε δύο διαστάσεις (1)  Θεωρούμε μόνιμη διάχυση με ένα όρο πηγής:  Ολοκληρώνοντας στον όγκο ελέγχου έχουμε :  Όπου

Μόνιμη διάχυση σε δύο διαστάσεις (2)  Εφαρμόζοντας το θεώρημα της απόκλισης (θεώρημα Gauss) έχουμε :

Ισορροπία διακριτοποιημένων ροών (1)  Γράφουμε το ολοκλήρωμα στον όγκο ελέγχου και έχουμε :

Ισορροπία διακριτοποιημένων ροών (2)  Τα διανύσματα των πλευρών δίνονται από:  Τελικά οι ροές δίνονται ως:

Διακριτοποίηση  Έστω ότι η ποσότητα φ μεταβάλλετε γραμμικά μεταξύ των κέντρων των κελιών, τότε :

Γραμμικοποίηση πηγών  Ο όρος πηγής μπορεί να διακριτοποιηθεί ως : και θεωρούμε ότι S p < 0

Τελική γραμμική εξίσωση Όπου:

Ιδιότητες της διακριτοποίησης Οι συντελεστές a P και a nb έχουν το ίδιο πρόσημο, επομένως όταν οι τιμές στα γειτονικά σημεία του φ αυξάνονται, αυξάνεται και το φ Αν S = 0: Συνεπώς η ποσότητα φ είναι περιορισμένη από τις τιμές των γειτονικών σημείων

Σημείωμα Χρήσης Έργων Τρίτων 1. Υπολογιστική Ρευστοδυναμική, Ν. Μαρκάτου και Δ. Ασημακόπουλου, Εκδ. Παπασωτηρίου 2. Υπολογιστική Ρευστομηχανική, Μπεργελές Γ., Τόμος 182, Εκδ. Συμεών 3. Υπολογιστική Ρευστοδυναμική, Παύλου Χατζηκωνσταντίνου, Πανεπιστημιακές Παραδόσεις 4. Computational Techniques for Fluid Dynamics, C.A.J. Fletcher, Springer Computational Methods for Fluid Dynamics, J.H. Ferziger, M. Peric, Springer Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics, T. Petrila, D. Trif, Springer, 2005

Σημείωμα Χρήσης Έργων Τρίτων Τα σχήματα και οι σχέσεις της παρουσίασης προέρχονται από τα βιβλία τα οποία βρίσκονται στα παρακάτω links: 1. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor and Francis, 1980: EL/egwcgi/330970/showfull.egw/1+0+1+fullhttp://hippothoe.lis.upatras.gr/cgi-bin- EL/egwcgi/330970/showfull.egw/1+0+1+full 2. H.K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: The finite volume method, Longman, 1995: EL/egwcgi/330972/showfull.egw/1+0+1+full

Σημείωμα Αναφοράς “Computational Fluid Dynamics”, Chung, 2006 Διαθέσιμο στο Νηρέα της Κεντρικής Βιβλιοθήκης του Πανεπιστημίου Πατρών: EL/egwcgi/326948/showfull.egw/2+0+1+full

Τέλος Ενότητας