Έλεγχος Υποθέσεων Ο έλεγχος υποθέσεων αναφέρεται στη διαδικασία αποδοχής ή απόρριψης μιας στατιστικής υπόθεσης, Κατά την εκτέλεση ενός στατιστικού ελέγχου,

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Applied Econometrics Second edition
Advertisements

Keller: Stats for Mgmt & Econ, 7th Ed
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
διαστήματα εμπιστοσύνης
Μη παραμετρικά κριτήρια
Μπουντζιούκα Βασιλική, MSc Βιοστατιστικός Εξωτ. Συνεργάτης ΕΣΔΥ
Keller: Stats for Mgmt & Econ, 7th Ed
ΚΕΦΑΛΑΙΟ 5 ΧΩΡΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Προσαρμοστικοί Αλγόριθμοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδρομικός.
ΚΕΦΑΛΑΙΟ 6 ΓΕΩΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ: ΣΗΜΕΙΑ
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΔΙΑΚΡΙΤΩΝ ΚΑΙ ΣΥΝΕΧΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ
Πηγή: Βιοστατιστική [Β.Γ. Σταυρινός, Δ.Β. Παναγιωτάκος]
ΑΣΚΗΣΗ 19η Έστω οι ακόλουθες παρατηρήσεις για τις μεταβλητές Υ, Χ1 και Χ
ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΓΩΓΗ: ΣΗΜΕΙΑΚΕΣ ΕΚΤΙΜΗΣΕΙΣ & ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Μη-Παραμετρική Στατιστική
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
Αρχές επαγωγικής στατιστικής
Στατιστική και λογισμικά στις επιστήμες συμπεριφοράς Ενότητα 6 : Δειγματοληπτικές Κατανομές Γεράσιμος Μελετίου Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό.
Στατιστική – Πειραματικός Σχεδιασμός Βασικά. Πληθυσμός – ένα μεγάλο σετ από Ν παρατηρήσεις (πιθανά δεδομένα) από το οποίο το δείγμα λαμβάνεται. Δείγμα.
Σχεδιασμός των Μεταφορών Ενότητα #5: Δειγματοληψία – Sampling. Δρ. Ναθαναήλ Ευτυχία Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών.
Διαστήματα Εμπιστοσύνης α) για τη μέση τιμή β) για ένα ποσοστό.
Εργαστήριο Στατιστικής (7 ο Εργαστήριο) Συσχετίσεις μεταξύ μεταβλητών (ερωτήσεων)
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ - ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Δρ. Κουνετάς Η Κωνσταντίνος.
Αρχές επαγωγικής στατιστικής Τμήμα :Νοσηλευτικής Πατρών Διδάσκουσα: Παναγιώταρου Αλίκη Διάλεξη 9.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Επαγωγική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής.
Έλεγχος υποθέσεων για αναλογίες. Εάν έχουμε αναλογίες σχετικά με ένα συγκεκριμένο χαρακτηριστικό σε έναν πληθυσμό τότε κάνουμε ελέγχους υποθέσεων για.
Στατιστικές Υποθέσεις (Ερευνητικά Ερωτήματα / Υποθέσεις προς επιβεβαίωση)
Στατιστικές Υποθέσεις (Ερευνητικά Ερωτήματα / Υποθέσεις προς επιβεβαίωση)
Διαστήματα εμπιστοσύνης – δοκιμή t Δ. Κομίλης. Είναι διαφορετικές οι διεργασίες?
ΕΛΕΓΧΟΙ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Η πιο συνηθισμένη στατιστική υπόθεση είναι η λεγόμενη Υπόθεση Μηδέν H 0. –Υποθέτουμε ότι η εμφανιζόμενη διαφορά μεταξύ μιας.
Διαστήματα Εμπιστοσύνης για αναλογίες. Ποιοτικές μεταβλητές χαρακτηρίζονται εκείνες οι οποίες τα στοιχεία τους δεν έχουν μετρηθεί με κάποιον τρόπο – οι.
Διάστημα εμπιστοσύνης για τη διακύμανση. Υπολογισμός Διακυμάνσεως και Τυπικής Αποκλίσεως Όταν τα δεδομένα αφορούν πληθυσμό – μ είναι ο μέσος του πληθυσμού.
ΗΛΕΚΤΡΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΗΣ.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΑ Πηγή: Βιοστατιστική [Σταυρινός / Παναγιωτάκος] Βιοστατιστική [Τριχόπουλος / Τζώνου / Κατσουγιάννη]
Μεθοδολογία έρευνας και στατιστική – Δείγμα – Διαφορά μέσων τιμών
Τι είναι «διάστημα» (1). Διαστήματα Εμπιστοσύνης α) για τη μέση τιμή (ποσοτικά) β) για ένα ποσοστό (ποιοτικά)
Πηγή: ‘Βιοστατιστική’ [Β.Γ. Σταυρινός, Δ.Β.Παναγιωτάκος]
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ - ΑΣΥΜΜΕΤΡΙΑΣ - ΚΥΡΤΩΣΕΩΣ
Στατιστική Επαγωγή Ένα τεράστιο μέρος της έρευνας διενεργείται μέσω της ανάλυσης δειγμάτων προκειμένου να εξάγουμε συμπεράσματα για τον πληθυσμό. Αυτό.
Στατιστικές Υποθέσεις
Μεθοδολογία έρευνας και στατιστική – Δείγμα –Κατανομές
Δειγματοληψία Στην Επαγωγική στατιστική οδηγούμαστε σε συμπεράσματα και αποφάσεις για τις παραμέτρους ενός πληθυσμού με τη βοήθεια ενός τυχαίου δείγματος.
Μέτρα μεταβλητότητας ή διασποράς
Επαγωγική Στατιστική Εκτίμηση και Έλεγχος μέσων τιμών Χαράλαμπος Γναρδέλλης Τμήμα Τεχνολογίας Αλιείας και Υδατοκαλλιεργειών.
Εκτιμητική: σημειακές εκτιμήσεις παραμέτρων
Έλεγχος Υπόθεσης για το μέσο ενός πληθυσμού
Έλεγχος της διακύμανσης
Στατιστικές Υποθέσεις II
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Έλεγχος για τη διαφορά μέσων τιμών μ1 και μ2 δύο πληθυσμών
Βιομετρία - Γεωργικός Πειραματισμός
Πού χρησιμοποιείται ο συντελεστής συσχέτισης (r) pearson
Άσκηση 2-Περιγραφικής Στατιστικής
5o Μάθημα: Το τεστ χ2 Κέρκυρα.
Πολυσυγγραμμικότητα Εξειδίκευση
Έλεγχος υποθέσεων με την χ2 «χι -τετράγωνο» κατανομή
ΣΤΑΤΙΣΤΙΚΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
Επαγωγική Στατιστική Συσχέτιση – Συντελεστής συσχέτισης Χαράλαμπος Γναρδέλλης Τμήμα Τεχνολογίας Αλιείας και Υδατοκαλλιεργειών.
Στατιστικές Υποθέσεις
Τι είναι «διάστημα» (1). Διαστήματα Εμπιστοσύνης α) για τη μέση τιμή (ποσοτικά) β) για ένα ποσοστό (ποιοτικά)
ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗ ΜΕΣΗ ΤΙΜΗ
ΤΕΙ Αθήνας Βιοστατιστική (Θ)
Κεφάλαιο 9 Βασικές Αρχές Του Ελέγχου Υποθέσεων: Έλεγχοι Ενός Δείγματος.
Επαγωγική Στατιστική Συσχέτιση – Συντελεστές συσχέτισης Χαράλαμπος Γναρδέλλης Εφαρμογές Πληροφορικής στην Αλιεία και τις Υδατοκαλλιέργειες.
ΕΛΕΓΧΟΣ ΑΝΕΞΑΡΤΗΣΙΑΣ ΠΟΙΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ
Ανάλυση διακύμανσης Τι είναι η ανάλυση διακύμανσης
Μεταγράφημα παρουσίασης:

Έλεγχος Υποθέσεων Ο έλεγχος υποθέσεων αναφέρεται στη διαδικασία αποδοχής ή απόρριψης μιας στατιστικής υπόθεσης, Κατά την εκτέλεση ενός στατιστικού ελέγχου, ορίζονται δυο υποθέσεις: η μηδενική υπόθεση Ηο και η εναλλακτική Η1. Η εκλογή της Η0 και της Η1 γίνεται σύμφωνα με τον παρακάτω ισχυρισμό: όταν κάνουμε μια έρευνα και προσπαθούμε να αποδείξουμε κάποιον ισχυρισμό στηριζόμενοι σε κάποιες παρατηρήσεις, τότε την άρνηση αυτού του ισχυρισμού λαμβάνουμε σαν Ηο και τον ίδιο ισχυρισμό σαν H1.

ΕΛΕΓΧΟΙ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Η πιο συνηθισμένη στατιστική υπόθεση είναι η λεγόμενη Υπόθεση Μηδέν H 0. –Υποθέτουμε ότι η εμφανιζόμενη διαφορά μεταξύ μιας παραμέτρου ενός δείγματος και της αντίστοιχης του πληθυσμού είναι  στατιστικά ασήμαντη και  οφείλεται στα τυχαία σφάλματα της δειγματοληψίας.  Aν δεν υπήρχαν τα σφάλματα της δειγματοληψίας, οι δύο παράμετροι θα ήταν ίσες και η διαφορά τους θα ήταν μηδέν.  Π.x. : Η 0 :μ = μ 0

ΕΛΕΓΧΟΙ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Η άλλη υπόθεση ονομάζεται Εναλλακτική Υπόθεση και συμβολίζεται με το Η 1. –Υποθέτουμε ότι η παράμετρος του πληθυσμού έχει διαφορετική τιμή από την υποθετική τιμή –Η εμφανιζόμενη διαφορά είναι στατιστικά σημαντική και δεν οφείλεται στα τυχαία σφάλματα της δειγματοληψίας. –Π.χ. Η 1 :μ≠ μ 0.

Η αποδοχή ή η απόρριψη μιας στατιστικής υποθέσεως -και ειδικά της υποθέσεως Η 0 -γίνεται με μια ορισμένη πιθανότητα να διαπράξουμε σφάλμα. Κατά τον έλεγχο μιας στατιστικής υποθέσεως είναι ενδεχόμενο να διαπράξουμε δύο βασικά σφάλματα: α) Σφάλμα Τύπου Ι. –Αν η ελεγχόμενη υπόθεση Η 0 είναι σωστή και το κριτήριο ελέγχου την απορρίψει σαν λανθασμένη. Η πιθανότητα διαπράξεως Σφάλματος Τύπου Ι –ονομάζεται Επίπεδο Σημαντικότητας και συμβολίζεται διεθνώς με το γράμμα α. –δηλ. η πιθανότητα απορρίψεως μιας σωστής υποθέσεως Η 0

β) Σφάλμα Τύπου II. –Αν η ελεγχόμενη υπόθεση Η 0 είναι λανθασμένη και το κριτήριο ελέγχου την δεχθεί σαν σωστή, τότε διαπράττουμε Σφάλμα Τύπου II. –Η πιθανότητα διαπράξεως Σφάλματος Τύπου II συμβολίζεται με το β. Στην πράξη, τα εφαρμοζόμενα κριτήρια ελέγχου πρέπει να ελαχιστοποιούν τις πιθανότητες εμφανίσεως σφαλμάτων και των δύο τύπων.

Συνήθως, προσπαθούμε να αποφύγουμε Σφάλμα Τύπου Ι, –δηλαδή να απορρίψουμε σωστή υπόθεση Ηο. Για να το επιτύχουμε,  προκαθορίζουμε την πιθανότητα να διαπράξουμε Σφάλμα Τύπου Ι σε ορισμένο Επίπεδο Σημαντικότητας α, συνήθως είναι το α = 0,05 (5%) ή α =0,01 (1%). Αν π.χ. προκαθορίσουμε α =0,05 και απορρίψουμε την Η 0 με βεβαιότητα 95%, –τότε σε 100 όμοιες περιπτώσεις μόνο σε 5 είναι δυνατόν να κάνουμε λάθος, –δηλαδή να είναι σωστή η υπόθεση και εμείς να την απορρίψουμε.

Διαδικασία ελέγχου μιας Στατιστικής Υποθέσεως Συνήθως σ’ έναν έλεγχο υπόθεσης σαν Ηο θέτουμε την ισότητα της παραμέτρου με κάποια γνωστή τιμή και σαν εναλλακτική την αύξηση της τιμής αν ισχυριζόμαστε ότι αυξάνει η τιμή της παραμέτρου ή τη μείωση της τιμής αν ισχυριζόμαστε ότι ελαττώνεται η τιμή της παραμέτρου ελαττώνεται ή απλώς την διαφοροποίηση της τιμής αν ισχυριζόμαστε ότι η τιμή της παραμέτρου άλλαξε.

Διαδικασία ελέγχου μιας Στατιστικής Υποθέσεως Έστω ότι θέλουμε να ελέγξουμε την υπόθεση ότι ο μέσος μ ενός πληθυσμού είναι ίσος με μ 0. Παίρνουμε τυχαίο δείγμα n μονάδων και υπολογίζουμε το μέσο ( ) του δείγματος. Η διαδικασία για τον έλεγχο μιας στατιστικής υποθέσεως ακολουθεί τα εξής στάδια: 1)Θέτουμε τις υποθέσεις Η0 και Η 1 : Η 0 :μ = μ 0, Η 1 :μ≠ μ 0 –καθορίζουμε το επίπεδο σημαντικότητας α = 0,01 ή α=0,05 ή α = 0,10. –δίπλευρο κριτήριο ελέγχου

2)Εφαρμόζουμε το κατάλληλο στατιστικό κριτήριο ελέγχου, από το οποίο προκύπτει μια συγκεκριμένη τιμή. Αν το δείγμα είναι πολυπληθές (n > 30), τότε χρησιμοποιούμε το εξής κριτήριο: Με βάση το επίπεδο σημαντικότητας βρίσκουμε τις κριτικές τιμές της τυποποιημένης μεταβλητής Ζ πάνω στην Τυποποιημένη Κανονική Καμπύλη –και καθορίζουμε τις περιοχές αποδοχής και απορρίψεως της υποθέσεως Η 0

Συγκρίνουμε την τιμή της Ζ που βρέθηκε από το κριτήριο ελέγχου με τις κριτικές τιμές Ζ α/2 Αν η τιμή Ζ του κριτηρίου ικανοποιεί τις ανισότητες: Z Ζ α/2 –τότε απορρίπτουμε την υπόθεση Η 0.

Αν όμως η τιμή Ζ του κριτηρίου ικανοποιεί τη διπλή ανισότητα: -Ζ α/2 <Z< Ζ α/2 τότε αποδεχόμαστε την υπόθεση Η 0. Βιβλιογραφία: Statistics for business and economics Anderson Sweeney Williams

Στο δίπλευρο κριτήριο ελέγχου, το επίπεδο σημαντικότητας α ισοκατανέμεται. Μονόπλευρο test: –Σε ορισμένες περιπτώσεις ενδιαφερόμαστε αν μια στατιστική παράμετρος (π.χ. ο μέσος) είναι μικρότερη ή μεγαλύτερη από μια συγκεκριμένη τιμή (έστω μ 0 ). Στις περιπτώσεις αυτές, οι ελεγχόμενες υποθέσεις είναι: Η ο : μ=μ 0 Η 1 : μ<μ 0 ή Η ο : μ=μ 0 Η 1 : μ>μ 0

Όταν n<30, η διακύμανση είναι άγνωστη και η κατανομή κανονική χρησιμοποιούμε την t κατανομή με n-1 βαθμούς ελευθερίας. Όσο περισσότερους βαθμούς ελευθερίας έχουμε τόσο περισσότερο προσεγγίζεται η κανονική κατανομή. Αν n<30, και η κατανομή άγνωστη τότε δεν μπορούμε να βγάλουμε ασφαλές συμπέρασμα – αν δύναται μεγαλώνουμε το δείγμα

Οι δειγματικοί μέσοι ακολουθούν την κανονική κατανομή. Ο μέσος τους είναι ο μέσος του πληθυσμού - ζητούμενο Η απόσταση των δειγματικών μέσων από το μέσο τους εξαρτάται από τυπική απόκλιση που έχουν δηλαδή Άρα αν ο δειγματικός μέσος που έχουμε διαφέρει σημαντικά από αυτόν που υποθέτουμε ως πραγματικός μέσος του πληθυσμού τότε απορρίπτουμε την υπόθεση

ΑΣΚΗΣΗ Από έναν πληθυσμό πήραμε ένα δείγμα n=50, το οποίο έσωσε μέσο όρο 28 και διακύμανση 34. Μπορούμε να υποστηρίζουμε ότι ο μέσος όρος του πληθυσμού απ’ όπου προήλθε το δείγμα είναι ίσος με 32 με α=0,05. Λύση n=50>30 H 0 :μ=32 Η 1 :μ  32

Γνωρίζουμε ότι η μεταβλητή Η διαφορά του δειγματικού μέσου από τον υποστηριζόμενο πληθυσμιακό μέσο είναι ικανή για να μας πείσει ότι τελικά ο πληθυσμιακός μέσος δεν είναι 32 α=0,05 είναι η πιθανότητα ο δειγματικός μέσος να βρεθεί στην περιοχή αυτή της τυποποιημένης κανονικής κατανομής ή αλλιώς –είναι η πιθανότητα να απορρίψουμε την βασική υπόθεση ενώ αυτή είναι σωστή

α=0,05 α/2=0,025  1-α/2=1-0,025=0,975 Ζ α/2 =1,96 Ζ * <-Ζ α/2 =-4,88<-1,96 Απορρίπτεται η βασική υπόθεση μ=32

ΑΣΚΗΣΗ Το όριο αντοχής ενός τύπου καλωδίου έχει μέση τιμή 1800 κιλά και τυπική απόκλιση 100 κιλά. Η εταιρία που φτιάχνει τα καλώδια ισχυρίζεται ότι μια βελτίωση στη μέθοδο κατασκευής αύξησε το όριο αντοχής. Για να επαληθεύσουμε, δοκιμάζουμε 50 νέα καλώδια. Εάν το μέσο όριο αντοχής τους βρέθηκε 1850 κιλά, είναι σωστός ο ισχυρισμός της εταιρίας σε επίπεδο σημαντικότητας 0,10;

n=50>30 Μονόπλευρο test H 0 :μ=1800 Η 1 :μ > 1800 α=0,05 1-0,05=0,95 Ζ α/2 =1,645 Ζ * >Ζ α =3,55>1,645 Απορρίπτεται η βασική υπόθεση μ=1800 Ζ0,000,010,020,030,040,050,06 1,40,91920,92070,92220,92360,92510,92650,9279 1,50,93320,93450,93570,93700,93820,93940,9406 1,60,94520,94630,94740,94840,94950,95050,9515 1,70,95540,95640,95730,95820,95910,95990,9608

To μέσο βάρος των φοιτητών σε έρευνα που πραγματοποιήθηκε το 1985 ήταν 70. Σήμερα σε δείγμα 49 φοιτητών βρέθηκε μέσο βάρος 75 και διακύμανση 25. Να γίνει ο παρακάτω έλεγχος για α=0,10 H 0 :μ=70 Η 1 :μ >70 Z0,000,010,020,030,040,050,060,070,080,09 1,20,88490,88690,88880,89070,89250,89440,89620,89800,89970,9015 1,30,90320,90490,90660,90820,90990,91150,91310,91470,91620,9177

Z0,000,010,020,030,040,050,060,070,080,09 1,20,88490,88690,88880,89070,89250,89440,89620,89800,89970,9015 1,30,90320,90490,90660,90820,90990,91150,91310,91470,91620,9177

ΑΣΚΗΣΗ Ένα τοπικό περιοδικό αποφάσισε να κάνει έρευνα για την ποιότητα του φαγητού των εστιατορίων της Κοζάνης. Η άριστη ποιότητα βαθμολογείται με 10 ενώ ποιοτικά θεωρούνται τα εστιατόρια με βαθμολογία πάνω από 7. Ένα δείγμα 12 φοιτητών επιλέχθηκε να ρωτηθεί για το εστιατόριο «ΑΑΑ» και έδωσαν τις εξής απαντήσεις 7,8,10,8,6,9,6,7,7,8,9,8. Ο δειγματικός μέσος είναι 7,75 και η τυπική απόκλιση 1,215. Εάν υποθέσουμε ότι η κατανομή του πληθυσμού ακολουθεί προσεγγιστικά την κανονική κατανομή, μπορούμε να θεωρήσουμε ότι το εστιατόριο «ΑΑΑ» παρέχει ποιοτικό φαγητό. α=0,05

n=12<30 Κατανομή t εφόσον ο πληθυσμός ακολουθεί την κανονική κατανομή Μονόπλευρο test H 0 :μ<7 Η 1 :μ > 7 α=0,05 t n-1 =t 12-1 =t 11 t 0,05 =1,796 t * >t α =2,14>1,796 -1,796 Απορρίπτεται η βασική υπόθεση μ=7 Επίπεδο εμπιστοσύνης 0,8000,9000,9500,9800,9900,9950,9980,999 Μονόπλευρος0,10000,05000,02500,01000,00500,00250,00100,0005 Δίπλευρος0,20000,10000,05000,02000,01000,0050,00200, ,3721,8122,2282,7643,1693,5814,1444, ,3631,7962,2012,7183,1063,4974,0254, ,3561,7822,1792,6813,0553,4283,9304,318