Εργαστήριο Στατιστικής (7 ο Εργαστήριο) Συσχετίσεις μεταξύ μεταβλητών (ερωτήσεων)

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ (Εργαστήριο) Εισηγητής: Θανάσης Βαφειάδης
Advertisements

Στατιστική Ανάλυση στην Εκπαιδευτική Έρευνα (Έκανα το πείραμα και πήρα τα δεδομένα…και τώρα τι κάνω; Χρήσιμες συμβουλές για αρχάριους) Δρ. Παντελής Μ.
Μάθημα 4ο Εισαγωγή στον τραπεζικό κίνδυνο. Τι είναι ο κίνδυνος Στο προηγούμενο μάθημα συσχετίσαμε τον κίνδυνο με το δανεισμό και τη διαφοροποίηση του.
Factorial Analysis of Variance – Παραγοντική Ανάλυση Διακύμανσης
Eλέγχουμε αν η διαφορά μεταξύ δύο μέσων τιμών (Τ και P) είναι σημαντική (δηλ. αν διαφέρει από το 0 ή ότι δεν είναι τυχαία) χρησιμοποιώντας το t-test: Recall.
Βασικές Αρχές Μέτρησης
2ο Γυμνάσιο Αριδαίας Α’ Γυμνασίου
Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Διάλεξη 5 Σύγκριση μέσω όρων
Μάρτιος 2011 Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Σχετικές πληροφορίες:
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Δοκιμή Βαθμολόγησης (Scoring test)
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
Τι είναι η Κατανομή (Distribution)
Διάλεξη  Μέτρηση: Είναι μια διαδικασία κατά την οποία προσδίδουμε αριθμητικά δεδομένα σε κάποιο αντικείμενο, σύμφωνα με κάποια προκαθορισμένα.
Πειραματικές Μονάδες Ένα φυτό Ένα πειραματικό τεμάχιο (plot)
Σχεδιασμός των Μεταφορών Ενότητα #5: Δειγματοληψία – Sampling. Δρ. Ναθαναήλ Ευτυχία Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών.
TO ΣΤΑΤΙΣΤΙΚΟ ΚΡΙΤΗΡΙΟ t (Ελεγχος Διαφορων Μεσων Ορων Αναμεσα Σε Δυο Ανεξαρτητα Δειγματα) Για τον ελεγχο στατιστικών υποθέσεων ανάμεσα στους μέσους όρους.
Διαστήματα Εμπιστοσύνης α) για τη μέση τιμή β) για ένα ποσοστό.
Στατιστικές Υποθέσεις III (Ερευνητικά Ερωτήματα / Υποθέσεις προς επιβεβαίωση)
Αρχές επαγωγικής στατιστικής Τμήμα :Νοσηλευτικής Πατρών Διδάσκουσα: Παναγιώταρου Αλίκη Διάλεξη 9.
Εργαστήριο Στατιστικής (9 ο Εργαστήριο) Συσχετίσεις μεταξύ μεταβλητών (ερωτήσεων)
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Επαγωγική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής.
Εργαστήριο Στατιστικής (8 ο Εργαστήριο) Συσχετίσεις μεταξύ μεταβλητών (ερωτήσεων)
Στατιστικές Υποθέσεις (Ερευνητικά Ερωτήματα / Υποθέσεις προς επιβεβαίωση)
Στατιστικές Υποθέσεις (Ερευνητικά Ερωτήματα / Υποθέσεις προς επιβεβαίωση)
Σχεδιασμός, Ανάλυση και Αξιολόγηση Συστημάτων Μεταφορών Ενότητα #9: Στατιστική ανάλυση αποτελεσμάτων. Χρήση SPSS. Δρ. Ναθαναήλ Ευτυχία Πολυτεχνική Σχολή.
ΕΛΕΓΧΟΙ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Η πιο συνηθισμένη στατιστική υπόθεση είναι η λεγόμενη Υπόθεση Μηδέν H 0. –Υποθέτουμε ότι η εμφανιζόμενη διαφορά μεταξύ μιας.
Έλεγχος Υποθέσεων Ο έλεγχος υποθέσεων αναφέρεται στη διαδικασία αποδοχής ή απόρριψης μιας στατιστικής υπόθεσης, Κατά την εκτέλεση ενός στατιστικού ελέγχου,
Διαστήματα Εμπιστοσύνης για αναλογίες. Ποιοτικές μεταβλητές χαρακτηρίζονται εκείνες οι οποίες τα στοιχεία τους δεν έχουν μετρηθεί με κάποιον τρόπο – οι.
Διάστημα εμπιστοσύνης για τη διακύμανση. Υπολογισμός Διακυμάνσεως και Τυπικής Αποκλίσεως Όταν τα δεδομένα αφορούν πληθυσμό – μ είναι ο μέσος του πληθυσμού.
Μελέτη της αυτοδιαχείρισης του διαβήτη με την εφαρμογή ειδικού ερωτηματολογίου σε παιδιά και εφήβους με σακχαρώδη διαβήτη τύπου 1 Τζίτζικα Γεωργία, Κύργιος.
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΑ Πηγή: Βιοστατιστική [Σταυρινός / Παναγιωτάκος] Βιοστατιστική [Τριχόπουλος / Τζώνου / Κατσουγιάννη]
Στατιστική Ανάλυση. Ποιοτικές και ποσοτικές μέθοδοι Ποιες είναι οι διαφορές; Πότε χρησιμοποιούνται; Πότε κάνω στατιστική ανάλυση;
Τι είναι «διάστημα» (1). Διαστήματα Εμπιστοσύνης α) για τη μέση τιμή (ποσοτικά) β) για ένα ποσοστό (ποιοτικά)
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ - ΑΣΥΜΜΕΤΡΙΑΣ - ΚΥΡΤΩΣΕΩΣ
Επικρατούσα τιμή. Σε περιπτώσεις, που διαφορετικές τιμές μιας μεταβλητής επαναλαμβάνονται περισσότερο από μια φορά, η επικρατούσα τιμή είναι η συχνότερη.
Στατιστικές Υποθέσεις
Βασική Στατιστική Επεξεργασία. Ερμηνεία Δεδομένων.
ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ ΟΜΑΔΙΚΗ ΕΡΓΑΣΙΑ
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Δειγματοληψία Στην Επαγωγική στατιστική οδηγούμαστε σε συμπεράσματα και αποφάσεις για τις παραμέτρους ενός πληθυσμού με τη βοήθεια ενός τυχαίου δείγματος.
Μέτρα μεταβλητότητας ή διασποράς
Στατιστικές Υποθέσεις
Εκτιμητική: σημειακές εκτιμήσεις παραμέτρων
Εκτιμητική: σημειακές εκτιμήσεις παραμέτρων
Έλεγχος Υπόθεσης για το μέσο ενός πληθυσμού
Καθηγητής Στατιστικής - Βιοστατιστικής
Έλεγχος της διακύμανσης
Στατιστικές Υποθέσεις II
Πού χρησιμοποιείται ο συντελεστής συσχέτισης (r) pearson
Η ανάγκη χρήσης μεταβλητών
5o Μάθημα: Το τεστ χ2 Κέρκυρα.
Βασική Στατιστική Επεξεργασία. Ερμηνεία Δεδομένων - 2.
Έλεγχος υποθέσεων με την χ2 «χι -τετράγωνο» κατανομή
Εισαγωγή στην Στατιστική
Πειραματικές Μονάδες Ένα φυτό Ένα πειραματικό τεμάχιο (plot)
Από τα Δεδομένα στην Πληροφορία………………….
ΣΤΑΤΙΣΤΙΚΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Μεθοδολογία Έρευνας Διάλεξη 5η: Δειγματοληψία
Από τα Δεδομένα στην Πληροφορία………………….
ΕΛΕΓΧΟΙ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ
Τμήμα Λογιστικής & Χρηματοοικονομικής
Γ΄ γυμνασίου ΓΥΜΝΑΣΙΟ ΒΟΥΛΙΑΓΜΕΝΗΣ ΠΑΠΑΔΟΠΟΥΛΟΥ ΣΤΑΥΡΟΥΛΑ
Στατιστικές Υποθέσεις
Τι είναι «διάστημα» (1). Διαστήματα Εμπιστοσύνης α) για τη μέση τιμή (ποσοτικά) β) για ένα ποσοστό (ποιοτικά)
ΤΜΗΜΑ ΙΑΤΡΙΚΩΝ ΕΡΓΑΣΤΗΡΙΩΝ
Στατιστικές Υποθέσεις
Στατιστικές Υποθέσεις III
Καθηγητής Στατιστικής - Βιοστατιστικής
Βιοστατιστική (Θ) ΤΕΙ Αθήνας Ενότητα 3: Περιγραφική στατιστική
Μεταγράφημα παρουσίασης:

Εργαστήριο Στατιστικής (7 ο Εργαστήριο) Συσχετίσεις μεταξύ μεταβλητών (ερωτήσεων)

Τι είναι συσχέτιση; Έστω ότι έχουμε δύο ερωτήσεις Q1,Q2 Θέλουμε να δούμε αν αυτές οι ερωτήσεις έχουν κάποια σχέση μεταξύ τους Σχέση δεν σημαίνει ομοιότητα, αφού οι ερωτήσεις είναι διαφορετικές ! Σχέση σημαίνει πως οι απαντήσεις στην Q1, επηρεάζουν ή καθορίζουν σε κάποιο βαθμό και τις απαντήσεις στην Q2

Περιπτώσεις 1.Ποιοτική με Ποσοτική (7 ο εργαστήριο) 2.Ποσοτική με Ποσοτική (8 ο εργαστήριο) 3.Ποιοτική με Ποιοτική (9 ο εργαστήριο)

Περίπτωση 1: Ποιοτική με Ποσοτική Έστω ότι η μία ερώτηση Q1 είναι ποιοτική (ονομαστική ή διατάξιμη) και η Q2 είναι ποσοτική Τότε ΣΧΕΣΗ μεταξύ των ερωτήσεων, σημαίνει πως οι απαντήσεις στην Q2, κατά μέσο όρο, είναι διαφορετικές ανάμεσα στις κατηγορίες της Q1 Δηλαδή??

Παράδειγμα 1 Θέλουμε να δούμε αν το ΦΥΛΟ (Ποιοτική) έχει σχέση με το ΥΨΟΣ των μαθητών (Ποσοτική) Χρησιμοποιούμε το αρχείο mathites Αν πράγματι υπάρχει κάποια σχέση, αυτό θα σημαίνει πως ο μέσος όρος του ύψους διαφέρει ανάμεσα στις κατηγορίες της ποιοτικής μεταβλητής Δηλαδή αν υπάρχει σχέση, ο μέσος όρος ύψους αγοριών και κοριτσιών είναι διαφορετικός

Αν βρούμε τους μέσους όρους ύψους αγοριών – κοριτσιών με την εντολή EXPLORE, παρατηρούμε ότι Μέσο ύψος αγοριών = 176,4 Μέσο ύψος κοριτσιών = 163,9 Βλέπουμε δηλαδή πως στο ΔΕΙΓΜΑ υπάρχει μια σχέση ανάμεσα στο ΦΥΛΟ και το ΥΨΟΣ, αφού τα μέσα ύψη είναι διαφορετικά

Πως από το Δείγμα, βγάζουμε συμπέρασμα για ΟΛΟΚΛΗΡΟ τον πληθυσμό? Αναλύουμε τα δεδομένα με την κατάλληλη διαδικασία (στο SPSS), και στη συνέχεια Ψάχνουμε στην απάντηση για τον αριθμό SIG (Τιμή p) Συγκρίνουμε το p με το 0,05 (ή 5%) Αν p<0,05 τότε οι ερωτήσεις μας έχουν σημαντική σχέση μεταξύ τους αν p>0,05 τότε οι ερωτήσεις δεν έχουν καμία σχέση και τα ευρήματα του Δείγματος ήταν τυχαία και όχι σημαντικά

Παράδειγμα 1 (συνέχεια) Η κατάλληλη στατιστική διαδικασία όταν η Ποιοτική Μεταβλητή, έχει μόνο 2 κατηγορίες (π.χ ΦΥΛΟ), ονομάζεται t-test Analyze Compare Means Independent Samples T-Test Test Variable: η Ποσοτική, δηλ. ΥΨΟΣ Grouping Variable: η Ποιοτική, δηλ. ΦΥΛΟ επιλέγουμε Define Groups, και βάζουμε τους αριθμούς 1 και 2 για τις δύο ομάδες (αγόρια/κορίτσια)

Το output (α) Πίνακας με τις μέσες τιμές και τις τυπικές αποκλίσεις ανά κατηγορία Group Statistics ΦύλοNMeanStd. DeviationStd. Error Μ. Ύψος μαθητή (cm)Κορίτσι28163,867,5951,435 Αγόρι22176,367,0071,494

Το output (β) Ο πίνακας που περιέχει το SIG (δηλ. το p) Από τον πίνακα, μας ενδιαφέρει το SIG, που βρίσκεται στην γραμμή “equal variances assumed” και στην στήλη “SIG.(2-tailed)”, Δηλαδή στο παράδειγμα μας είναι πολύ κοντά στο μηδέν (αναφέρεται ως 0,000), οπότε προφανώς p<<0,05 άρα οι μέσες τιμές του ύψους αγοριών/κοριτσιών διαφέρουν, οπότε το ΦΥΛΟ έχει κάποια σχέση με το ΥΨΟΣ.

Παράδειγμα 2 Να δούμε αν το ΦΥΛΟ έχει σχέση με τον ΒΑΘΜΟ ΦύλοNMean Std. Deviation Κορίτσι2816,4572,41 Αγόρι2216,7862,54 Το p(SIG) είναι,642 δηλαδή p=0,642 > 0,05 Αυτό σημαίνει πως δεν υπάρχει διαφορά στις μέσες βαθμολογίες αγοριών/κοριτσιών, οπότε το ΦΥΛΟ δεν έχει σχέση με τη βαθμολογία

Παράδειγμα 3 Θέλουμε να βρούμε τη σχέση ανάμεσα στην ΚΥΡΙΟΤΕΡΗ ΑΣΧΟΛΙΑ και τον ΒΑΘΜΟ Εδώ η ποιοτική μεταβλητή έχει 5 κατηγορίες Η κατάλληλη διαδικασία όταν έχουμε περισσότερες από 2 κατηγορίες ονομάζεται Ανάλυση Διακύμανσης (ANOVA)

ANOVA Analyze Compare Means One Way ANOVA Dependent List: η ποσοτική, π.χ. ΒΑΘΜΟΣ Factor: η ποιοτική, π.χ. ΑΣΧΟΛΙΑ επίσης Options  Descriptive

Το output (α) Πίνακας με τις μέσες τιμές και τις τυπικές αποκλίσεις ανά κατηγορία NMean Std. Deviation Υπολογιστές717,771,9376 Αθλητισμός1216,0833,1889 Μουσική / χορός1515,4531,7365 Τηλεόραση / Κιν/φος716,1712,5921 Διάβασμα εξωσχολικών βιβλίων 718,9571,3770

Το output (β) Το SIG (p) βρίσκεται στον επόμενο πίνακα, και στην περίπτωση μας είναι p=0,011<0,05 Οπότε συμπεραίνουμε ότι η κυριότερη ασχολία έχει σχέση με το Βαθμό. Σχέση σημαίνει όπως είπαμε διαφοροποίηση μέσων τιμών ανά κατηγορία Παρατηρούμε από τον πίνακα με τις μέσες τιμές, ότι μεγαλύτερο βαθμό περιμένουμε στα παιδιά που διαβάζουν εξωσχολικά βιβλία (18,956) και ακολουθούν αυτά που ασχολούνται με υπολογιστές (17,771) κλπ.

Συνοψίζοντας Όταν έχουμε να συσχετίσουμε μια ΠΟΙΟΤΙΚΗ με μια ΠΟΣΟΤΙΚΗ μεταβλητή, συγκρίνουμε τους μέσους όρους της ΠΟΣΟΤΙΚΗΣ για όλες τις κατηγορίες της ΠΟΙΟΤΙΚΗΣ Αν είναι δύο κατηγορίες, κάνουμε t-test, αν είναι περισσότερες κάνουμε ANOVA. Συγκρίνουμε το p (SIG) με τον αριθμό 0,05 και βγάζουμε συμπέρασμα για τη ύπαρξη σχέσης (αν p 0,05)