ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Στοιχειώδης γεννήτρια συνεχούς ρεύματος
Advertisements

Μετάδοση Θερμότητας με μεταφορά
Tάσος Μπούντης Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών
Φυσική Β’ Λυκείου Κατεύθυνσης
Εισαγωγή στη Μηχανική των Ρευστών
ΠΕΔΙΟ ΡΟΗΣ ΡΕΥΣΤΟΥ Ροή Λάβας Ροή Νερού
ΑΝΑΛΥΣΗ ΣΕ ΜIΚΡΟΣΚΟΠΙΚΟ ΕΠΙΠΕΔΟ Ή ΔΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ
ΚΕΦΑΛΑΙΟ 2 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
Στοιχειώδης γεννήτρια εναλλασσόμενου ρεύματος
Συστήματα Συντεταγμένων
ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΑΕΡΙΩΝ
ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
Κεφάλαιο 23 Ηλεκτρικό Δυναμικό
3 Σ υ σ τ ή μ α τ α α ν α φ ο ρ ά ς κ α ι χ ρ ό ν ο υ
Μελέτη κίνησης με εξισώσεις
ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ:
Θεμελιώδεις Αρχές της Μηχανικής
Κεφάλαιο 2 Κίνηση σε μία διάσταση
ANAKOINWSH H 2η Ενδιάμεση Εξέταση μεταφέρεται στις αντί για , την 24 Νοεμβρίου στις αίθουσες ΧΩΔ και 110 λόγω μη-διαθεσιμότητας.
Copyright © 2009 Pearson Education, Inc. Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσματα.
Υπολογιστική Μοντελοποίηση στη Βιοϊατρική Τεχνολογία
Υπολογιστική Μοντελοποίηση στη Βιοϊατρική Τεχνολογία
Φυσική κατεύθυνσης Γ’ Λυκείου Επιμέλεια –παρουσίαση χ. τζόκας
ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΕΔΙΟΥ ΡΟΗΣ
ΗΛΕΚΤΡΟΔΥΝΑΜΙΚΗ Κλασική Μηχανική Σχετικιστική Μηχανική
Υπολογιστική Μοντελοποίηση στη Βιοϊατρική Τεχνολογία
Οι σύγχρονες αντιλήψεις
Κεφάλαιο Η2 Ο νόμος του Gauss.
3 Σ υ σ τ ή μ α τ α α ν α φ ο ρ ά ς κ α ι χ ρ ό ν ο υ
ΣΥΝΟΨΗ (4) 33 Ηλεκτρομαγνητικά κύματα Εξισώσεις του Maxwell στο κενό
ΥΛΗ ΚΑΙ ΚΙΝΗΣΗ Η κίνηση είναι χαρακτηριστική ιδιότητα της ύλης. Κίνηση παρατηρούμε από τους μακρινούς γαλαξίες έως μέχρι το εσωτερικό των ατόμων. Η.
Κ Υ Μ Α Τ Ι Κ Η.
(The Primitive Equations)
ΥΔΡΟΣΤΑΤΙΚΗ Υδροστατική είναι το κεφάλαιο της Υδραυλικής που μελετά τους νόμους που διέπουν τα ρευστά όταν βρίσκονται σε ηρεμία.
Εισαγωγή στο Μαγνητισμό
Πίεση σε υγρό Ένα υγρό εξασκεί πίεση προς όλες τις διευθύνσεις
Διάλεξη 14: Εισαγωγή στη ροή ρευστών
Μηχανική Ρευστών Ι Ενότητα 4: Κινηματική Νίκος Πελεκάσης Πολυτεχνική Σχολή Τμήμα Μηχανολόγων Μηχανικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ.
5.1 Παραμορφώσεις, Τροπές, Στροφές Το διάνυσμα της μετατόπισης: Θλίψη: Η τροπή ε -1, γιατί δε μπορούμε να κοντύνουμε ένα σώμα περισσότερο από το ίδιο του.
ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού.
Κ Υ Μ Α Τ Ι Κ Η.
Κλασσική Μηχανική Ενότητα 7: Η αρχή των δυνατών έργων. Η αρχή του D’ Alembert Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Κλασσική Μηχανική Ενότητα 5: Μη Αδρανειακά Συστήματα Αναφοράς Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
Κλασσική Μηχανική Ενότητα 1: Εισαγωγικές Έννοιες-Ορισμοί Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Κλασσική Μηχανική Ενότητα 2: Μονοδιάστατες Κινήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
Συμπληρωματική Πυκνότητα Ελαστικής Ενέργειας Συμπληρωματικό Εξωτερικό Έργο W: Κανονικό έργο Τελικές δυνάμεις Ρ, τελικές ροπές Μ, ολικές μετατοπίσεις δ.
Μερκ. Παναγιωτόπουλος-Φυσικός 1 Η έννοια της ταχύτητας.
Θεωρία Σημάτων και Συστημάτων 2013
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES
Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Μηχανική Ρευστών Ι Ενότητα 7: Θεμελιώδεις αρχές διατήρησης – Μάζα
Διάλεξη 15: O αλγόριθμος SIMPLE
2) Οι Θεμελιώδεις Εξισώσεις (The Primitive Equations)
Κλασσική Μηχανική Ενότητα 8: ΟΙ ΕΞΙΣΩΣΕΙΣ LAGRANGE
Διάλεξη 4: Εξίσωση διάχυσης
Κινητική θεωρία των αερίων
Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Αναλυτικό πρόγραμμα διδασκαλίας του μαθήματος
Καθηγητής Σιδερής Ευστάθιος
Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια)
Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)
ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΣΤΡΟΦΟΡΜΗ – ΔΙΑΤΗΡΗΣΗ ΣΤΡΟΦΟΡΜΗΣ.
ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Αναλυτικό πρόγραμμα διδασκαλίας του μαθήματος
Μερκ. Παναγιωτόπουλος-Φυσικός
ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ - ΑΓΩΓΙΜΟΤΗΤΑ
Κινητική θεωρία των αερίων
*ΦΥΣΙΚΑ ΜΕΓΕΘΗ ονομάζονται οι ποσότητες που μπορούν να μετρηθούν και χρησιμοποιούνται για την περιγραφή των φυσικών φαινομένων. Παραδείγματα φυσικών μεγεθών:
Μεταγράφημα παρουσίασης:

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της δυναμικής

Θα εξετάσουμε σε αυτό το κεφάλαιο τις σχέσεις μεταξύ των θέσεων που παίρνουν οι στοιχειώδεις όγκοι του ρευστού και του χρόνου Οι στοιχειώδεις αυτοί όγκοι είναι πολύ πιο μικροί από τις χαρακτηριστικές διαστάσεις του ρευστού (αλλά πολύ μεγαλύτεροι από τις μέσες διαστάσεις των μορίων. Για τον λόγο αυτό οι στοιχειώδεις όγκοι ονομάζονται σωματίδια

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΡΕΥΣΤΟΥ Περιγραφή Lagrange: Παρακολουθούμε την κίνηση ενός σωματιδίου και καταγράφουμε όλες τις αλλαγές που λαμβάνουν χώρα απάνω στον στοιχειώδη αυτό όγκο. Ονομάζουμε το σωματίδιο σύμφωνα με την θέση που κατείχε την στιγμή t=t 0 (Σωματιδιακή ή υλική περιγραφή) Περιγραφή Euler: Καταλαμβάνουμε μία θέση στον χώρο (σημείο ) και παρατηρούμε όλα τα σωματίδια που περνάν από αυτό. (Χωρική περιγραφή)

Θεωρούμε αντίστοιχα δύο τρόπους παραγώγισης μίας ποσότητας Φ που εκφράζει μία ιδιότητα του ρευστού α) Την ολική παράγωγο ως προς τον χρόνο t : ή όπου το παραμένει σταθερό αλλά το και το t μεταβάλλονται β) Την μερική παράγωγο ως προς τον χρόνο t : όπου το παραμένει σταθερό αλλά το και το t μεταβάλλονται

Η ολική παράγωγος μας δίνει το ρυθμό της αλλαγής όπως αυτή καταγράφεται από έναν παρατηρητή κινείται με ένα σωματίδιο Η μερική παράγωγος μας δίνει το ρυθμό της αλλαγής όπως αυτή καταγράφεται σε ένα σταθερό σημείο

Για να βρούμε την σχέση μεταξύ της ολικής και της μερικής παραγώγου, εξετάζουμε την ιδιότητα Φ ενός σωματιδίου το οποίο βρίσκεται -στην χρονική στιγμή t στην θέση -στην χρονική στιγμή t+dt στην θέση και ακολουθούμε την εξής διαδικασία: Κρατάμε τους πρώτους όρους από το παρακάτω ανάπτυγμα Taylor: Παίρνουμε υπόψη μας ότι Διαιρώ με τον όρο dt

H μεταβλητή Φ συμβολίζει ένα βαθμωτό (θερμοκρασία, πυκνότητα, συγκέντρωση..) ή ένα διανυσματικό μέγεθος (π.χ. ταχύτητα) Αν το Φ είναι βαθμωτό μέγεθος τότε Αν το Φ είναι διανυσματικό μέγεθος τότε Έστω.Τότε η επιτάχυνση ενός σωματιδίου μπορεί να εκφραστεί μέσω της ολικής παραγώγου της ταχύτητας Η επιτάχυνση αποτελείται από δύο όρους: Την τοπική επιτάχυνση Την μεταθετική επιτάχυνση

Mεταβολή όγκου ενός στοιχειώδους σωματιδίου Εξετάζουμε την μεταβολή στον χρόνο του όγκου και του σχήματος ενός σωματιδίου Θεωρούμε ότι για t=0 το σχήμα του σωματιδίου είναι ορθογώνιο παραλληλεπίπεδο και ο όγκος του Για χρόνους t>0 το σωματίδιο κατά κανόνα παραμορφώνεται επειδή το πεδίο ροής δεν είναι (κατά κανόνα) ομοιόμορφο. Ονομάζουμε dV τον όγκο του σωματιδίου στο χρονικό αυτό σημείο και τις συντεταγμένες του

Ο μετασχηματισμός παριστάνει μία αλλαγή συντεταγμένων από τις αρχικές συντεταγμένες στις συντεταγμένες που έχει το σωματίδιο στο τυχόν χρονικό σημείο t Κατά συνέπεια είναι γνωστό από τη μαθηματική ανάλυση ότι οι όγκοι dV και dV 0 συνδέονται με την σχέση: όπου:

Μπορούμε να να υπολογίσουμε την ολική παράγωγό της ιακωβινής μετασχηματισμού ζ: Η απόκλιση της ταχύτητας, δηλ. το φανερώνει από φυσική πλευρά τον ρυθμό διαστολής ή συστολής ενός στοιχειώδους σωματιδίου

ΘΕΩΡΗΜΑ ΜΕΤΑΦΟΡΑΣ ΤΟΥ REYNOLDS Ορίζουμε το μέγεθος F(t) με το ολοκλήρωμα της μορφής: Όπου η συνάρτηση F(t) μπορεί να είναι ένα βαθμωτό μέγεθος, (πυκνότητα, θερμοκρασία), διανυσματικό μέγεθος (ταχύτητα) ή τανυστικό μέγεθος Λόγω της ροής ο όγκος που εξετάζουμε αλλάζει σχήμα συναρτήσει του χρόνου: V=V(t).

Σε πολλά προβλήματα της Μηχανικής Ρευστών απαιτείται να υπολογιστεί η ολική παράγωγος του F(t) Επειδή τα όρια του ολοκληρώματος εξαρτώνται από τον χρόνο, δεν μπορούμε να παραγωγίσουμε την συνάρτηση Φ Χρησιμοποιούμε τον μετασχηματισμό Και την σχέση: Το dV 0 (αρχικό όγκος σωματιδίου) δεν εξαρτάται από τον χρόνο

Παραγωγίζοντας: Χρησιμοποιούμε την σχέση: Πραγματοποιώντας τον αντίστροφο μετασχηματισμό και και χρησιμοποιώντας την σχέση ζdV 0 =dV

Παίρνοντας υπόψη μας την σχέση μεταξύ ολικής και μερικής παραγώγου: Συνεπάγεται: Ορισμένες φορές είναι χρήσιμο να χρησιμοποιήσουμε στην παραπάνω σχέση το θεώρημα του GREEN όπου Το κάθετο μοναδιαίο διάνυσμα σε τυχόν σημείο της επιφάνειας

Εξίσωση της συνέχειας Θα εφαρμόσουμε το θεώρημα του Reynolds για την περίπτωση που Φ αντιστοιχεί με την πυκνότητα ρ του ρευστού που εξετάζουμε. Ορίζουμε την πυκνότητα ως: Όπου dm η μάζα περιέχεται στον όγκο dV

Υποθέτω ότι ο όγκος V είναι σωματιδιακός (προσέγγιση Lagrange). Κατά συνέπεια μπορώ να εφαρμόσω την αρχή της διατήρησης της μάζας (πρέπει να παραμείνει σταθερή) Κάνοντας χρήση του θεωρήματος του Reynolds: Επειδή το τριπλό ολοκλήρωμα πρέπει να μηδενίζεται για κάθε αυθαίρετο όγκο V(t), η παράσταση μέσα στο ολοκλήρωμα πρέπει να μηδενίζεται

Η παραπάνω εξίσωση γράφεται και με τη μορφή: ή και

Για την περίπτωση ομογενούς και ασυμπίεστου νερού: Οι παραπάνω εξισώσεις γράφονται σε καρτεσιανές συντεταγμένες: και

Ροϊκή συνάρτηση Υποθέτουμε πως έχουμε ένα ασυμπίεστο ρευστό και επίπεδη κίνηση (w=0) Αν βρούμε μία συνάρτηση Ψ με τις ιδιότητες Τότε η εξίσωση της συνέχειας ικανοποιείται αυτομάτως Πλεονέκτημα της εισαγωγής της συνάρτησης ροής είναι ότι μπορούμε να εργαστούμε με μία μόνο συνάρτηση (Ψ), αντί δύο συναρτήσεων (u και v)

Yπολογισμός της ροϊκής συνάρτησης Ψ Ολοκληρώνουμε την (3.4.12) : Διαφορίζoντας την παραπάνω εξίσωση ως προς x: Παίρνοντας υπόψη μας την (3.4.13)

Και τελικά η (3.4.14) γίνεται : Παίρνοντας υπόψη μας την (3.4.13) Παίρνοντας υπόψη μας την (3.4.12) και την εξίσωση της συνέχειας Οι δύο πρώτοι όροι της δεξιάς πλευράς της (3.4.18) είναι συναρτήσεις του πεδίου ταχυτήτων Η ακριβής γνώση του τρίτου όρου δεν είναι απαραίτητη

Στην πράξη συχνά σχεδιάζουμε τις καμπύλες για τις οποίες, για μία δεδομένη χρονική στιγμή t k, Ψ =σταθερά Οι καμπύλες αυτές έχουν την ιδιότητα να είναι εφαπτόμενες στο πεδίο ταχυτήτων Πράγματι αν: Κατά συνέπεια:

Κάνοντας χρήση του ορισμού της ροϊκής συνάρτησης, δηλ.: Δηλαδή, για ασυμπίεστη ροή και για καμπύλες για τις οποίες ψ=σταθερό: Συνεπώς οι γραμμές ροής (για τις οποίες για τις οποίες ψ=σταθερό) έχουν την διεύθυνση της ταχύτητας για μία ορισμένη χρονική στιγμή.

ΤΡΟΧΙΕΣ ΣΩΜΑΤΙΔΙΩΝ Για μία περιγραφή της ροής σύμφωνα με την προσέγγιση του Lagrange, εισάγουμε την έννοια των τροχιών σωματιδίων: Με αρχικές συνθήκες: για Για μόνιμη ροή οι γραμμές ροής και οι τροχιές των σωματιδίων συμπίπτουν Σύμπτωση των γραμμών ροής και των τροχιών των σωματιδίων δεν σημαίνει μόνιμη ροή