1 Κατανομή Fermi-Dirac και η στάθμη Fermi Η πυκνότητα καταστάσεων μας λέει πόσες καταστάσεις υπάρχουν σε μία δεδομένη ενέργεια Ε. Η συνάρτηση Fermi f(E)

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
“ Ἡ ἀ γάπη ἀ νυπόκριτος. ἀ ποστυγο ῦ ντες τ ὸ πονηρόν, κολλώμενοι τ ῷ ἀ γαθ ῷ, τ ῇ φιλαδελφί ᾳ ε ἰ ς ἀ λλήλους φιλόστοργοι, τ ῇ τιμ ῇ ἀ λλήλους προηγούμενοι.
Advertisements

Ιδιοσυναρτήσεις υδρογόνου-Τροχιακά s (1s, 2s)
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Παρεμβολή (Interpolation)
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
Ο PID έλεγχος. Integral Lag Distance velocity lag Υλοποιούμε την.
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
 Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.  Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας.
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
Αντίληψη (2016) Όραση Μαρία Κουτρομάνου. Structure of the Eye: Iris The iris is similar to the diaphragm in a camera Your iris widens in dim light and.
Ψηφιακά Παιχνίδια και μάθηση Δρ. Νικολέτα Γιαννούτσου Εργαστήριο Εκπαιδευτικής Τεχνολογίας.
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Guide to Business Planning The Value Chain © Guide to Business Planning A principal use of value chain analysis is to identify a strategy mismatch between.
Guide to Business Planning The Value System © Guide to Business Planning The “value system” is also referred to as the “industry value chain”. In contrast.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Αναπαράσταση αριθμών στον υπολογιστή Σφάλματα
Φάσμα παιδαγωγικής ανάπτυξης
Jane Austen Pride and Prejudice (περηφάνια και προκατάληψη)
JSIS E 111: Elementary Modern Greek
Matrix Analytic Techniques
Φωτονικά Ολοκληρωμένα Κυκλώματα
ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Β4 Σχ. Έτος:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Class X: Athematic verbs II
φίλτρα IIR (Infinite Impulse Response)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Άλλη επιλογή: Κύλινδρος:
Προσαρμοστικά μοντέλα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
(ALPHA BANK – EUROBANK – PIRAEUS BANK)
Example Rotary Motion Problems
Κλασσική προσέγγιση στις ηλεκτρικές ιδιότητες των μετάλλων
Γεώργιος Σ. Γκουμάς MD,PhD, FESC
This show was edited by Mike:
ECTS-DS Labels Selection 2011 Αθήνα, 28/11/2011
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
ΤΙ ΕΙΝΑΙ ΤΑ ΜΟΆΙ;.
This show was edited by Mike:
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 18. Οι νόμοι της Θερμοδυναμικής.
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
ΑΝΟΡΓΑΝΗ & ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ
Find: σ1 [kPa] for CD test at failure
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
Find: Force on culvert in [lb/ft]
This show was edited by Mike:
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
This show was edited by Mike:
Deriving the equations of
Variable-wise and Term-wise Recentering
Find: ρc [in] from load (4 layers)
Κόστους –Όγκου – Κέρδους
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
CPSC-608 Database Systems
Νational and Kapodistrian University of Athens Department of Physics Department of Solid State Physics Spin-orbit torque at magnetic defects on the surface.
Personal Pronouns.
Erasmus + An experience with and for refugees Fay Pliagou.
Class X: Athematic verbs II © Dr. Esa Autero
Μεταγράφημα παρουσίασης:

1 Κατανομή Fermi-Dirac και η στάθμη Fermi Η πυκνότητα καταστάσεων μας λέει πόσες καταστάσεις υπάρχουν σε μία δεδομένη ενέργεια Ε. Η συνάρτηση Fermi f(E) καθορίζει πόσες από τις υπάρχουσες καταστάσεις στην ενέργεια E θα καταληφθούν από ηλεκτρόνια. Καθορίζει λοιπόν σε συνθήκες ισορροπίας τη πιθανότητα με την οποία μια διαθέσιμη κατάσταση ενέργειας E θα καταλειφθεί από ένα ηλεκτρόνιο. Αυτή είναι η συνάρτηση κατανομής πιθανότητας. E F = ενέργεια Fermi k= σταθερά Boltzmann = 1.38  10  23 J/K = 8.6  10  5 eV/K T= θερμοκρασία σε K

2 κατανομή Fermi-Dirac: για T  0 K Όταν E > E F : Όταν E < E F : EEFEEF 0 1 f(E)

3 αν E = E F τότε f(E F ) = ½ αν τότε άρα : δηλ. οι περισσότερες καταστάσεις για ενέργειες 3kT πάνω από την E F είναι μη κατειλημμένες. If then οπότε: Άρα 1  f(E) = πιθανότητα ώστε μια κατάσταση να είναι άδεια τείνει στο μηδέν. Επομένως οι περισσότερες καταστάσεις θα είναι γεμάτες. kT (300 K) = 0.025eV, E g (Si) = 1.1eV, άρα 3kT είναι πολύ μικρό Κατανομή Fermi-Dirac : για T > 0 K

4 Θερμοκρασιακή εξάρτηση της κατανομής Fermi-Dirac

5

6 Equilibrium distribution of carriers Distribution of carriers = DOS  probability of occupancy =  g(E) f(E) (where DOS = Density of states) Total number of electrons in CB (conduction band) = Total number of holes in VB (valence band) =

Properties of a Fermion gas

The internal energy of a gas of N fermions

Integration by parts (I) In calculus, integration by parts is a rule that transforms the integral of products of functions into other, hopefully simpler, integrals. The rule arises from the product rule of differentiation. If u = f(x), v = g(x), and the differentials du = f '(x) dx and dv = g'(x) dx; then in its simplest form the product rule is

Integration by parts (II) In the traditional calculus curriculum, this rule is often stated using indefinite integrals in the form As a simple example, consider Since ln x simplifies to 1/x when differentiated, we make this part of ƒ; since 1/x 2 simplifies to −1/x when integrated, we make this part of g. The formula now yields

At T = 0, U = (3/5)Nε F, this energy is large because all the electrons must occupy the lowest energy states up to the Fermi level. The average energy of a free electron in silver at T = 0 is The mean kinetic energy of an electron, even at absolute zero, is two orders of magnitude greater than the mean kinetic energy of an ordinary gas molecule at room temperature.

Heat capacity The electronic heat capacity C e can be found by taking the derivative of Equation (19.18): For temperatures that are small compared with the Fermi temperature, we can neglect the second term in the expansion compared with the first and obtain

Thus the electronic specific heat capacity is 2.2 x R. This small value explains why metals have a specific heat capacity of about 3R, the same as for other solids. It was originally believed that their free electrons should contribute an additional (3/2) R associated with their three translational degrees of freedom. Our last calculation shows that the contribution is negligible. The energy of the electrons changes only slightly with temperature (dU/dT is small) because only those electrons near the Fermi level can increase their energies as the temperature is raised, and there are precious few of them.

At very low temperatures the picture is different. From the Debye theory, C v is proportional to T 3 and so the heat capacity of a metal takes the form C v = AT + BT 3, where the first term is the electronic contribution and the second is associated with the crystal lattice. At sufficiently low temperatures, the AT term can dominate, as the sketch of Figure 19.9 indicates. Figure 19.9 Sketch of the heat capacity of a metal as a function of temperature showing the electronic and lattice contributions.

S = 0 at T = 0, as it must be. The Helmholtz function F = U -TS is The fermion gas pressure is found from

For silver we find that N/V = 5.9 x10 28 m -3 and T F = 65,000K. Thus P = 2/5 *5.9*10 28 *(1.38* ) (6.5*10 4 ) = 2.1*10 10 Pa = 2.1*10 5 atm. Given this tremendous pressure, we can appreciate the role of the surface potential barrier in keeping the electrons from evaporating from the metal.

19.5 Applications to White Dwarf Stars The temperature inside the core of a typical star is at the order of 10 7 K. The atoms are completely ionized at such a high T, which creates a hugh electron gas The loss of gravitational energy balances with an increase in the kinetic energy of the electrons and ions, which prevent the collapse of star!

Example: The pressure of the electron gas in Sirius B can be calculated with the formula Using the following numbers MassM = 2.09 × kg Radius R= 5.57 × 10 6 m VolumeV= 7.23 × m 3

Assuming that nuclear fusion has ceased after all the core hydrogen has been converted to helium! The number nucleons = Since the ratio of nucleons and electrons is 2:1 there are electrons

Therefore, T(=10 7 K) is much smaller then T F. i.e. is a valid assumption ! Thus: P can be calculated as

A white dwarf is stable when its total energy is minimum For Since can be expressed as Where

For gravitational energy of a solid With In summary To find the minimum U with respect to R

19.7 a) Calculate Fermi energy for Aluminum assuming three electrons per Aluminum atom.

19.7b) Show that the aluminum at T=100 K, μ differs from ε F by less than 0.01%. (The density of aluminum is 2.69 x 10 3 kg m - 3 and its atomic weight is 27.)

19.7c) Calculate the electronic contribution to the specific heat capacity of aluminum at room temperature and compare it to 3R. Using the following equation

Consider the collapse of the sun into a white dwarf. For the sun, M= 2 x kg, R = 7 x 10 8 m, V= 1.4 x m 3. Calculate the Fermi energy of the Sun’s electrons.

(b) What is the Fermi temperature? (c) What is the average speed of the electrons in the fermion gas (see problem 19-4). Compare your answer with the speed of light.