Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Γνωστική προσέγγιση στη ψυχολογία μάθησης των Μαθηματικών Η προσέγγιση αυτή δίνει έμφαση: 1) στην διαμόρφωση και ανάπτυξη της εννοιολογικής δομής, 2) στις.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "Γνωστική προσέγγιση στη ψυχολογία μάθησης των Μαθηματικών Η προσέγγιση αυτή δίνει έμφαση: 1) στην διαμόρφωση και ανάπτυξη της εννοιολογικής δομής, 2) στις."— Μεταγράφημα παρουσίασης:

1 Γνωστική προσέγγιση στη ψυχολογία μάθησης των Μαθηματικών Η προσέγγιση αυτή δίνει έμφαση: 1) στην διαμόρφωση και ανάπτυξη της εννοιολογικής δομής, 2) στις εννοιολογικές αλλαγές, 3) στις αναπαραστάσεις της μαθηματικής γνώσης και 4) στη μεταγνώση. Ν. Καστάνη

2

3 Οι εννοιολογικές δομές στα Μαθηματικά δεν θεωρητικές έννοιες Οι μαθηματικές έννοιες δεν είναι εμπειρικές, αλλά θεωρητικές έννοιες. σχέσεις Αυτό σημαίνει ότι δεν είναι γενικεύσεις κάποιων εμπειρικών δεδομένων ούτε τα ονόματα τους, αλλά σχέσεις μεταξύ εμπειρικών δεδομένων. Έτσι οι μαθηματικές έννοιες δεν υπάρχουν μεμονωμένα, αλλά μέσα σε δομές. Π.χ. ο αριθμός υπάρχει σε σχέση με τη μονάδα και συνυπάρχουν μέσα σε συστήματα μέτρησης.

4 Η μάθηση των μαθηματικών εννοιών Ό κάθε μαθητής έχει κάποιες εμπειρικές μαθηματικές αντιλήψεις. Tο μυαλό του δεν είναι τελείως κενό μαθηματικών αντιλήψεων. δύσκολα αλλάζουν Αυτές οι εμπειρικές μαθηματικές αντιλήψεις δύσκολα αλλάζουν, δηλ. δύσκολα θεωρητικοποιούνται και δύσκολα διαμορφώνουν μια συγκροτημένη θεωρητική σκέψη. Κλειδί για την υπέρβαση αυτή είναι η σύνδεση της με την ανάπτυξη της ικανότητας χειρισμών, εξήγησης και ερμηνείας των μαθηματικών διαδικασιών και συστημάτων για τη λύση επιστημονικών και πρακτικών ζητημάτων.

5 Εννοιολογικές αλλαγές Τόσο στην ιστορική πορεία των μαθηματικών, όσο και στην ηλικιακή εξέλιξη των μαθητών, οι μαθηματικές έννοιες αναπτύσσονται, αλλάζουν. Από εμπειρικές αντιλήψεις γίνονται θεωρητικές έννοιες και θεωρητικά συστήματα εννοιών, τα οποία μετεξελίσσονται σε θεωρητικές δομές υψηλότερου επιπέδου. Αυτές οι εννοιολογικές αλλαγές δεν είναι απρόσκοπτες. Πάντοτε προσκρούουν σε επιστημολογικά εμπόδια, που πρέπει να ξεπεραστούν. Ένα επιστημολογικό εμπόδιο είναι η προϋπάρχουσα γνώση.

6 ριζικών εννοιολογικών αλλαγών Confrey, Οι Εννοιολογικές Αλλαγές, οι Έννοιες του Αριθμού και η Εισαγωγή στον Απειροστικό Λογισμό Στα Μαθηματικά η ιδέα των ριζικών εννοιολογικών αλλαγών εμφανίστηκε, το 1980, με τη διατριβή της Jere Confrey, που είχε ως θέμα : Οι Εννοιολογικές Αλλαγές, οι Έννοιες του Αριθμού και η Εισαγωγή στον Απειροστικό Λογισμό

7 Μέσα στο νέο επιστημολογικό πλαίσιο της αποδοχής επιστημονικών επαναστάσεων των επιστημονικών επαναστάσεων και του κονστρουκτιβισμού κονστρουκτιβισμού στα Μαθηματικά δόθηκε μια ισχυρή ώθηση για τη διάδοση και την ανάπτυξη των εννοιολογικών αλλαγών εννοιολογικών αλλαγών στα Μαθηματικά, μετά το 1995.

8

9 Η έννοια του αριθμού Στον Αρχαίο Ελληνικό Πολιτισμό, αριθμός είναι μια συλλογή μονάδων Στην Αναγέννηση και μετά, αριθμός είναι το αποτέλεσμα μιας μέτρησης

10 Με τη Γαλλική Επανάσταση η μαθηματική παιδεία αναβαθμίστηκε σημαντικά και εκσυγχρονίστηκε το περιεχόμενό της École Polytechnique Gaspard MongeJ.-L. Lagrange Στο πλαίσιο αυτό δημιουργήθηκε ένας προβληματισμός για την ανανέωση της έννοιας του αριθμού έτσι ώστε να συμπεριλαμβάνει τους αρνητικούς αριθμούς.

11 Το σημαντικότερο βήμα στην κατεύθυνση αυτή το έκανε, γύρω στο 1820, ο Γερμανός μαθηματικός Martin Ohm ( ). Σύμφωνα με τον Ohm ο αριθμός προκύπτει έμμεσα ως συνεπακόλουθο των αριθμητικών πράξεων. εννοιολογική αλλαγή δομισμού Αυτή ήταν μια αξιοσημείωτη εννοιολογική αλλαγή, που αντιμετώπιζε τον αριθμό από τη σκοπιά του δομισμού. τι είναι αριθμός; αριθμός είναι ένα στοιχείο ενός συστήματος αριθμών Έτσι σήμερα καλλιεργείται η αντίληψη των συστημάτων αριθμών μ’ αποτέλεσμα στο ερώτημα: τι είναι αριθμός; η απάντηση μοιάζει με σοφιστεία του τύπου: αριθμός είναι ένα στοιχείο ενός συστήματος αριθμών. Αυτό σημαίνει ότι ορίζονται τα συστήματα αριθμών με βάση τις εσωτερικές ιδιότητές τους κι όχι με τα αντικείμενά τους. Οπότε ο αριθμός μορφοποιείται από την εσωτερική ταυτότητα του συστήματος που ανήκει.

12 Η έννοια της έλλειψης Συνήθως η έλλειψη παρουσιάζεται ως μια κωνική τομή και στη συνέχεια το σχήμα της απ’ όπου προκύπτει η εξίσωσή της.

13 Είναι γνωστό ότι ο Απολλώνιος όρισε και χειρίστηκε την έλλειψη ως κωνική τομή. Και το σημαντικότερο, βρήκε εκ των υστέρων τη θέση των εστιών της, στα τελευταία κεφάλαια του σχετικού έργου του. Στην ιστορική πορεία του θέματος μελετούσαν την έλλειψη, κατά κανόνα, ως κωνική τομή και με τη βοήθεια των αξόνων και του κέντρου της.

14 “Αναλυτικά” Μαθηματικά Μετά τον Euler, από τα τέλη του 18 ου αιώνα, όταν επικράτησαν τα “Αναλυτικά” Μαθηματικά, καθιερώνεται η μελέτη της έλλειψης με προκαθορισμένες της εστίες της και με βάση τη γνωστή εξίσωση της. Η αλλαγή αυτή δεν έγινε τυχαία, αλλά προέκυψε από την επικράτηση του αναλυτικού τρόπου σκέψης στη Γεωμετρία και η υποβάθμιση του συνθετικού τρόπου κατανόησης των κωνικών τομών. Αυτή η ιστορική μετεξέλιξη αποτελεί μια εννοιολογική αλλαγή.

15 Αναπαραστάσεις Όλες οι γνώσεις εντάσσονται στη μνήμη. Δηλ. “αποθηκεύονται στο σκληρό δίσκο της μνήμης”. Πώς; Αυτό γίνεται με κάποιες κωδικοποιήσεις, π.χ. με απεικονίσεις ή με σύμβολα ή με γλωσσικές εκφράσεις. Αυτές οι κωδικοποιήσεις των γνώσεων στη μνήμη των ανθρώπων είναι οι αναπαραστάσεις.

16 Παραδείγματα Επιμεριστική ιδιότητα α(β+γ)=αβ+αγ

17 Μείον επί μείον

18 Η αναπαράσταση του μείον επί μείον κάνει συν με τη βοήθεια προσανατολισμένης κίνησης Jean-Robert Argand ( ) 1806

19 Άθροισμα ετερόσημων αριθμών με τη βοήθεια προσανατολισμένης κίνησης

20 Μείον επί μείον, με προσανατολισμένη κίνηση

21 Μεταγνώση Μεταγνώση είναι η γνώση σχετικά με τη γνώση. φύσης ρόλουδυναμικής Δηλ. το παρασκήνιο της γνώσης, με άλλα λόγια η επίγνωση της φύσης, του ρόλου και της δυναμικής της γνώσης

22

23 Ένα παράδειγμα Γιατί;


Κατέβασμα ppt "Γνωστική προσέγγιση στη ψυχολογία μάθησης των Μαθηματικών Η προσέγγιση αυτή δίνει έμφαση: 1) στην διαμόρφωση και ανάπτυξη της εννοιολογικής δομής, 2) στις."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google