Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
ΔημοσίευσεDemetre Alexopoulos Τροποποιήθηκε πριν 9 χρόνια
1
DR-Prolog: A System for Defeasible Reasoning with Rules and Ontologies on the Semantic Web Αναπαράσταση και Επεξεργασία Γνώσης Άνοιξη 2009
2
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης2 Defeasible logics are rule-based, without disjunction Classical negation is used in the heads and bodies of rules. Rules may support conflicting conclusions The logics are skeptical in the sense that conflicting rules do not fire. Thus consistency is preserved. Priorities on rules may be used to resolve some conflicts among rules They have linear computational complexity. Defeasible Logic: Basic Characteristics
3
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης3 Defeasible Logic – Syntax (1/2) A defeasible theory D is a triple (F,R,>), where F is a finite set of facts, R a finite set of rules, and > a superiority relation on R. There are two kinds of rules (fuller versions of defeasible logics include also defeaters): strict rules, defeasible rules Strict rules: A p Whenever the premises are indisputable then so is the conclusion. penguin(X) bird(X) Defeasible rules: A p They can be defeated by contrary evidence. bird(X) fly(X)
4
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης4 Defeasible Logic – Syntax (2/2) Superiority relations A superiority relation on R is an acyclic relation > on R. When r 1 > r 2, then r 1 is called superior to r 2, and r 2 inferior to r 1. This expresses that r 1 may override r 2. Example: r: bird(X) flies(X) r’: penguin(X) ¬flies(X) r’ > r
5
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης5 DR-Prolog Features DR-Prolog is a rule system for the Web that: reasons both with classical and non-monotonic rules handles priorities between rules reasons with RDF data and RDFS/OWL ontologies translates rule theories into Prolog using the well- founded semantics complies with the Semantic Web standards (e.g. RuleML) has low computational complexity
6
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης6 System Architecture
7
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης7 Translation of Defeasible Theories (1/3) The translation of a defeasible theory D into a logic program P(D) has a certain goal: to show that p is defeasibly provable in D p is included in the Well-Founded Model of P(D) The translation is based on the use of a metaprogram which simulates the proof theory of defeasible logic
8
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης8 Translation of Defeasible Theories (2/3) For a defeasible theory D = (F,R,>), where F is the set of the facts, R is the set of the rules, and > is the set of the superiority relations in the theory, we add facts according to the following guidelines: fact(p) for each p F strict(r i, p,[q 1,…,q n ]) for each rule r i : q 1,…,q n p R defeasible(r i,p,[q 1,…,q n ]) for each rule r i : q 1,…,q n p R sup(r,s) for each pair of rules such that r>s
9
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης9 Translation of Defeasible Theories (3/3) Element of the dl theoryLP element negated literal ~p ~(p) dl facts p fact(p). dl strict rules r: q 1,q 2,…,q n → p strict(r,p,[q 1,…,q n ]). dl defeasible rules r: q 1,…,q n p defeasible(r,p,[q 1,…,q n ]). priority on rules r>s sup(r,s).
10
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης10 Prolog Metaprogram (1/3) Class of rules in a defeasible theory supportive_rule(Name,Head,Body):- strict(Name,Head,Body). supportive_rule(Name,Head,Body):- defeasible(Name,Head,Body). Definite provability definitely(X):- fact(X). definitely(X):- strict(R,X,[Y 1,Y 2,…,Y n ]), definitely(Y 1 ), definitely(Y 2 ), …, definitely(Y n ).
11
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης11 Prolog Metaprogram (2/3) Defeasible provability defeasibly(X):- definitely(X). defeasibly(X):- supportive_rule(R, X, [Y 1,Y 2,…,Y n ]), defeasibly(Y 1 ), defeasibly(Y 2 ), …, defeasibly(Y n ), sk_not(overruled(R,X)), sk_not(definitely(¬X)).
12
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης12 Prolog Metaprogram (3/3) Overruled(R,X) overruled(R,X):- supportive_rule(S, ¬X, [Y 1,Y 2,…,Y n ]), defeasibly(Y 1 ), defeasibly(Y 2 ), …, defeasibly(Y n ), sk_not(defeated(S, ¬X)). Defeated(S,X) defeated(S,X):- supportive_rule(T, ¬X, [Y 1,Y 2,…,Y n ]), defeasibly(Y 1 ), defeasibly(Y 2 ), …, defeasibly(Y n ), sup(T, S).
13
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης13 An Application Scenario Adam visits a Web Travel Agency and states his requirements for the trip he plans to make. Adam wants to depart from Athens and considers that the hotel at the place of vacation must offer breakfast. either the existence of a swimming pool at the hotel to relax all the day, or a car equipped with A/C, to make daily excursions at the island. if there is no parking area at the hotel, the car is useless if the tickets for the transportation to the island are not included in the travel package, the customer is not willing to accept it
14
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης14 Adam’s Requirements in DL r 1 : from(X,athens), includesResort(X,Y), breakfast(Y,true), swimmingPool(Y,true) => accept(X). r 2 : from(X,athens), includesResort(X,Y), breakfast(Y,true),includesService(X,Z),hasVehicle(S,W), vehicleAC(W,true) => accept(X). r 3 : includesResort(X,Y),parking(Y,false) => ~accept(X). r 4 : ~includesTransportation(X,Z) => ~accept(X). r 1 > r 3. r 4 > r 1. r 4 > r 2. r 3 > r 2.
15
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης15 Adam’s Requirements in Prolog defeasible(r1,accept(X),[from(X,athens), includesResort(X,Y),breakfast(Y,true), swimmingPool(Y,true)]). defeasible(r2,accept(X),[from(X,athens), includesResort(X,Y),breakfast(Y,true), includesService(X,Z),hasVehicle(Z,W), vehicleAC(W,true)]). defeasible(r3,~(accept(X)),[includesResort(X,Y), parking(Y,false)]). defeasible(r4,~(accept(X)), [~(includesTransportation(X,Y))]). sup(r1,r3). sup(r4,r1). sup(r4,r2). sup(r3,r2).
16
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης16 Knowledge Base (facts) in Prolog fact(from(‘IT1’,athens)). fact(to(‘IT1’,crete)). fact(includesResort(‘IT1’,’CretaMareRoyal’). fact(breakfast(‘CretaMareRoyal’,true). fact(swimmingPool(‘CretaMareRoyal’,true). fact(includesTransportation(‘IT1’,’Aegean’). fact(from(‘IT2’,athens)). fact(to(‘IT2’,crete)). fact(includesResort(‘IT2’,’Atlantis’). fact(breakfast(‘Atlantis’,true). fact(swimmingPool(‘Atlantis’,false). fact(includesTransportation(‘IT2’,’Aegean’). …
17
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης17 Queries ?- defeasibly(accept(‘IT2’)). no ?- defeasibly(accept(X)). X=IT1; no
18
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης18 DR-Prolog Web Environment http://www.csd.uoc.gr/~bikakis/DR-PrologVisit:
19
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης19 DR-Prolog Web Environment
20
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης20 DR-Prolog Web Environment
21
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης21 DR-Prolog Web Environment
22
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης22 DR-Prolog Web Environment
23
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης23 DR-Prolog Web Environment
24
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης24 DR-Prolog Web Environment
25
19/4/2015Αναπαράσταση και Επεξεργασία Γνώσης25 :- Thank You!
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.