Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Factoring and Testing Primes in Small Space Viliam Geffert P.J.Šafárik University, Košice, Slovakia Dana Pardubská Comenius University, Bratislava, Slovakia.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "Factoring and Testing Primes in Small Space Viliam Geffert P.J.Šafárik University, Košice, Slovakia Dana Pardubská Comenius University, Bratislava, Slovakia."— Μεταγράφημα παρουσίασης:

1

2 Factoring and Testing Primes in Small Space Viliam Geffert P.J.Šafárik University, Košice, Slovakia Dana Pardubská Comenius University, Bratislava, Slovakia

3 Factoring and Testing Primes in Small Space Viliam Geffert P.J.Šafárik University, Košice, Slovakia Dana Pardubská Comenius University, Bratislava, Slovakia

4 n is a prime

5 n is a prime if it cannot evenly be divided by any number other than 1 and itself

6 Euclid [280 B.C. ]: infinite number of primes

7 n is a prime if it cannot evenly be divided by any number other than 1 and itself Euclid [280 B.C. ]: infinite number of primes J.Hadamard, C.J.de la Valée Poussin [1896]:

8 n is a prime if it cannot evenly be divided by any number other than 1 and itself Euclid [280 B.C. ]: infinite number of primes J.Hadamard, C.J.de la Valée Poussin [1896]: Prime Number Theorem

9 n is a prime if it cannot evenly be divided by any number other than 1 and itself Euclid [280 B.C. ]: infinite number of primes J.Hadamard, C.J.de la Valée Poussin [1896]: Prime Number Theorem p m = (1 + o(1) ). m. ln m - p m denotes the m-th prime

10 Fundamental Theorem of Arithmetic - Factoring n = p i 1 k i 1. p i 2 k i 2. …. p i ℓ k i ℓ k i j > 0, integer

11 Fundamental Theorem of Arithmetic - Factoring n = p i 1 k i 1. p i 2 k i 2. …. p i ℓ k i ℓ k i j > 0, integer Factoring is computationally very hard

12 Fundamental Theorem of Arithmetic - Factoring n = p i 1 k i 1. p i 2 k i 2. …. p i ℓ k i ℓ k i j > 0, integer Factoring is computationally very hard - utilized to design secure cryptographic systems (data transmission over internet)

13 Primes= { n | n is a prime } - n binary coded

14 Primes= { n | n is a prime } - n binary coded un-Primes= {1 n | n is a prime }

15 Primes= { n | n is a prime } - n binary coded un-Primes= {1 n | n is a prime } Agrawal, Kayal, Saxena [2004]: Primes ϵ P

16 Primes= { n | n is a prime } - n binary coded un-Primes= {1 n | n is a prime } Agrawal, Kayal, Saxena [2004]: Primes ϵ P - no factorization, if n is composite

17 Primes= { n | n is a prime } - n binary coded un-Primes= {1 n | n is a prime } Agrawal, Kayal, Saxena [2004]: Primes ϵ P - no factorization, if n is composite P.Shor [1994]: polynomial time quantum algorithm for factoring

18 Primes= { n | n is a prime } - n binary coded un-Primes= {1 n | n is a prime } Agrawal, Kayal, Saxena [2004]: Primes ϵ P - no factorization, if n is composite P.Shor [1994]: polynomial time quantum algorithm for factoring How much space is sufficient?

19 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n)

20 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) n

21 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) n

22 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) n

23 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) n O(loglog n) bits

24 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) n O(loglog n) bits

25 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n)

26 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) ? Is n a prime ? … 1 1 1 … YES: P PP

27 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) ? Is n a prime ? … 1 1 1 … YES: … x1x1 1 … NO: x2x2 CC C P PP

28 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) ? Is n a prime ? … 1 1 1 … YES: … x1x1 1 … NO: x2x2 - space below loglog n CC C P PP

29 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) ? Is n a prime ? … 1 1 1 … YES: … x1x1 1 … NO: x2x2 … WRONG GUESS: - space above loglog n W CC C P PP

30 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n)

31 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) (2) un-Composites ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n)

32 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) (2) un-Composites ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) - (2) is not a trivial consequence of (1), since it is not known whether ASPACE(loglog n) is closed under complement

33 (1) un-Primes ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) (2) un-Composites ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) - (2) is not a trivial consequence of (1), since it is not known whether ASPACE(loglog n) is closed under complement - additional bonus - factoring

34 Algorithm based on “elementary school” primality testing: for X = 2, 3,..., n-1 do if X divides n then “n is composite” end “n is prime”

35 O(loglog n) space due to

36 - Modular representation (based on Chinese Remainder Theorem)

37 O(loglog n) space due to - Modular representation (based on Chinese Remainder Theorem) M = p 1. p 2. …. p m n = (z 1, …, z m ), z i = n mod p i

38 O(loglog n) space due to - Modular representation (based on Chinese Remainder Theorem) M = p 1. p 2. …. p m n = (z 1, …, z m ), z i = n mod p i memory space: log p m  O(loglog n)

39 O(loglog n) space due to - Modular representation (based on Chinese Remainder Theorem) M = p 1. p 2. …. p m n = (z 1, …, z m ), z i = n mod p i memory space: log p m  O(loglog n) - Scalar representation

40 O(loglog n) space due to - Modular representation (based on Chinese Remainder Theorem) M = p 1. p 2. …. p m n = (z 1, …, z m ), z i = n mod p i memory space: log p m  O(loglog n) - Scalar representation n = α. M, α ϵ  0,1)

41 O(loglog n) space due to - Modular representation (based on Chinese Remainder Theorem) M = p 1. p 2. …. p m n = (z 1, …, z m ), z i = n mod p i memory space: log p m  O(loglog n) - Scalar representation n = α. M, α ϵ  0,1) -- truncated to 3. loglog n bits

42 __ Z = (z 1, …, z m ), Z < √MM = p 1. p 2. …. p m M 0 Z

43 __ Z = (z 1, …, z m ), Z < √MM = p 1. p 2. …. p m M 0 Z In reality

44 __ Z = (z 1, …, z m ), Z < √MM = p 1. p 2. …. p m M 0 Z Z In reality

45 __ Z = (z 1, …, z m ), Z < √MM = p 1. p 2. …. p m M 0 Z

46 __ Z = (z 1, …, z m ), Z < √MM = p 1. p 2. …. p m m  O(log Z) M 0 Z

47 __ Z = (z 1, …, z m ), Z < √MM = p 1. p 2. …. p m m  O(log Z) p m  O(m. log m)  O(log Z. loglog Z) M 0 Z

48 __ Z = (z 1, …, z m ), Z < √MM = p 1. p 2. …. p m m  O(log Z) p m  O(m. log m)  O(log Z. loglog Z) log p m  O(loglog Z) M 0 Z

49 __ Z = (z 1, …, z m ), Z < √MM = p 1. p 2. …. p m ? Is Z a prime ? M 0 Z

50 __ Z = (z 1, …, z m ), Z < √MM = p 1. p 2. …. p m ? Is Z a prime ? if  z i = 0 then “ Z is a composite ” M 0 Z

51 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 ? Is Z a prime ? M 0 Z

52 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 Z is a prime iff  X = (x 1, …, x m ), X ϵ {2, …, Z-1} X does not divide Z M 0 Z X

53 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 Z is a prime iff  X = (x 1, …, x m ), X ϵ {2, …, Z-1} X does not divide Z Z

54 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 Z is a prime iff  X = (x 1, …, x m ), X ϵ {2, …, Z-1} X does not divide Z Z branching universally at each X ϵ {2, …, Z-1}

55 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 Z is a prime iff  X = (x 1, …, x m ), X ϵ {2, …, Z-1} X does not divide Z  Z branching universally at each X ϵ {2, …, Z-1}      

56 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 Z is a prime iff  X = (x 1, …, x m ), X ϵ {2, …, Z-1} X does not divide Z M 0 Z X Z  X

57 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 Z is a prime iff  X = (x 1, …, x m ), X ϵ {2, …, Z-1} X does not divide Z M 0 Z X

58 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? M 0 Z X

59 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? if  x i = 0 then “ X does not divide Z ” M 0 Z X

60 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z X

61 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z x i required, for some i X

62 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z  log p m space log p m  O(loglog Z) x i required, for some i compute p i X

63 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z  log p m space log p m  O(loglog Z) x i required, for some i compute p i existentially guess x i ϵ {0, …, p i -1} X xixi

64 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z split universally compute p i existentially guess x i ϵ {0, …, p i -1} X xixi xixi

65 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z split universally - one parallel process verifies the guessed value x i X xixi xixi pipi pipi pipi xixi

66 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z X xixi - one parallel process executes the main program, assuming the guessed value x i is correct

67 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z z i required, for some i X

68 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z  log p m space log p m  O(loglog Z) z i required, for some i compute p i X

69 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z  log p m space log p m  O(loglog Z) z i required, for some i compute p i existentially guess z i ϵ {0, …, p i -1} X zizi

70 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z split universally compute p i existentially guess z i ϵ {0, …, p i -1} X zizi zizi

71 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z split universally - one parallel process verifies the guessed value z i X zizi zizi

72 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z split universally - one parallel process verifies the guessed value z i X zizi pipi pipi zizi zizi

73 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z X zizi - one parallel process executes the main program, assuming the guessed value z i is correct

74 M 0 Z X __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? Z X log p m  O(loglog Z) z 1, z 2, …, z m x 1, x 2, …, x m

75 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? if  x i = 0 then “ X does not divide Z ” M 0 Z X

76 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} ? X divides Z ? M 0 Z X

77 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z M 0 Z X

78 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z M= p 1. p 2. …. p m M 0 Z X

79 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z M= p 1. p 2. …. p m X [M] * Y= (X * Y) mod M = (x 1 [p 1 ] * y 1, …, x m [p m ] * y m ) M 0 Z X

80 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z M= p 1. p 2. …. p m X [M] * Y= (X * Y) mod M = (x 1 [p 1 ] * y 1, …, x m [p m ] * y m ) X [M] -1 : X [M] * X [M] -1 = 1 X [M] -1 = (x 1 [ p 1] -1, …, x m [ p m] -1 ),  i: x i ≠ 0 M 0 Z X

81 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z M 0 Z X

82 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z Y = (y 1, …, y m ) M 0 Z X Y

83 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z if Y  Z then “ X divides Z ” else “ X does not divide Z ” Y = (y 1, …, y m ) M 0 Z X Y

84 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z if Y  Z then “ X divides Z ” else “ X does not divide Z ” Y = (y 1, …, y m ) M 0 Z X Y Z X

85 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z if Y  Z then “ X divides Z ” else “ X does not divide Z ” Y = (y 1, …, y m ) M 0 Z X Y Z X z 1, z 2, …, z m x 1, x 2, …, x m

86 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z if Y  Z then “ X divides Z ” else “ X does not divide Z ” Y = (y 1, …, y m ) M 0 Z X Y Z X y i required, for some i z 1, z 2, …, z m x 1, x 2, …, x m

87 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z if Y  Z then “ X divides Z ” else “ X does not divide Z ” Y = (y 1, …, y m ) M 0 Z X Y Z X y i required, for some i compute x i z 1, z 2, …, z m x 1, x 2, …, x m

88 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z if Y  Z then “ X divides Z ” else “ X does not divide Z ” Y = (y 1, …, y m ) M 0 Z X Y Z X y i required, for some i compute x i compute z i z 1, z 2, …, z m x 1, x 2, …, x m

89 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z if Y  Z then “ X divides Z ” else “ X does not divide Z ” Y = (y 1, …, y m ) M 0 Z X Y Z X y i required, for some i compute x i compute z i y i := x i [ p i] -1 [p i ] * z i z 1, z 2, …, z m x 1, x 2, …, x m

90 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z if Y  Z then “ X divides Z ” else “ X does not divide Z ” Y = (y 1, …, y m ) M 0 Z X Y

91 __ Z = (z 1, …, z m ), Z < √M,  i : z i ≠ 0, x i ≠ 0 X = (x 1, …, x m ), X ϵ {2, …, Z-1} X divides Z iff X [M] -1 [M] * Z  Z - to solve the problem we only need an algorithm deciding whether Y  Z - for any given Y Y = (y 1, …, y m ) M 0 Z X Y

92 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? M 0 Z Y

93 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? Thm: Let Z = (z 1, …, z m ) and Y = (y 1, …, y m ) be two numbers in the residual representation, Z  M/2. M 0 Z Y

94 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? Thm: Let Z = (z 1, …, z m ) and Y = (y 1, …, y m ) be two numbers in the residual representation, Z  M/2. If the values z i and y i can effectively be computed in O(log p m ) space, for each given i  {1, …, m}, M 0 Z Y

95 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? Thm: Let Z = (z 1, …, z m ) and Y = (y 1, …, y m ) be two numbers in the residual representation, Z  M/2. If the values z i and y i can effectively be computed in O(log p m ) space, for each given i  {1, …, m}, then the question of whether Y  Z can also be decided in O(log p m ) space. M 0 Z Y

96 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? Idea: convert Y and Z into scalar representation: M 0 Z Y

97 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? Idea: convert Y and Z into scalar representation: Y = α y. M α y, α z ϵ  0,1) Z = α z. M M 0 Z Y

98 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? Idea: convert Y and Z into scalar representation: Y = α y. M α y, α z ϵ  0,1) Z = α z. M M 0 Z Y

99 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? Idea: convert Y and Z into scalar representation: Y = α y. M α y, α z ϵ  0,1) Z = α z. M Y  Z iff α y  α z M 0 Z Y

100 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? Idea: convert Y and Z into scalar representation: Y = α y. M α y, α z ϵ  0,1) Z = α z. M Y  Z iff α y  α z -- trunctated to 3. loglog n bits M 0 Z Y

101 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? M 0 Z Y

102 __ Z = (z 1, …, z m ), 0  Z < √M Y = (y 1, …, y m ), 0  Y < M ? Y  Z ? if Y  M / 2 then “ Y > Z ” M 0 Z Y

103 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 ? Y  Z ? M 0 Z Y

104 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 M 0 Z Y

105 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 W = (w 1, …, w m ) M 0 Z Y W

106 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 if W  M / 2 then “ Y  Z ” else “ Y > Z ” W = (w 1, …, w m ) M 0 Z Y W

107 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 if W  M / 2 then “ Y  Z ” else “ Y > Z ” W = (w 1, …, w m ) M 0 Z Y W X Z

108 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 if W  M / 2 then “ Y  Z ” else “ Y > Z ” W = (w 1, …, w m ) M 0 Z Y W Z X z 1, z 2, …, z m x 1, x 2, …, x m y 1, y 2, …, y m

109 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 if W  M / 2 then “ Y  Z ” else “ Y > Z ” W = (w 1, …, w m ) M 0 Z Y W Z X w i required, for some i z 1, z 2, …, z m x 1, x 2, …, x m y 1, y 2, …, y m

110 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 if W  M / 2 then “ Y  Z ” else “ Y > Z ” W = (w 1, …, w m ) M 0 Z Y W Z X w i required, for some i compute z i z 1, z 2, …, z m x 1, x 2, …, x m y 1, y 2, …, y m

111 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 if W  M / 2 then “ Y  Z ” else “ Y > Z ” W = (w 1, …, w m ) M 0 Z Y W Z X z 1, z 2, …, z m x 1, x 2, …, x m y 1, y 2, …, y m w i required, for some i compute z i compute y i

112 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 if W  M / 2 then “ Y  Z ” else “ Y > Z ” W = (w 1, …, w m ) M 0 Z Y W Z X w i required, for some i compute z i compute y i w i := z i [p i ] - y i z 1, z 2, …, z m x 1, x 2, …, x m y 1, y 2, …, y m

113 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 if W  M / 2 then “ Y  Z ” else “ Y > Z ” W = (w 1, …, w m ) M 0 Z Y W

114 Z = (z 1, …, z m ), 0  Z < M / 2 Y = (y 1, …, y m ), 0  Y < M / 2 Y  Z iff Z [M] - Y  M / 2 - to decide whether Y  Z, we only need an algorithm deciding whether W  M / 2 - for any given W W = (w 1, …, w m ) M 0 Z Y W

115 W = (w 1, …, w m ), 0  W < M = p 1. …. p m ? W  M / 2 ? M 0 W

116 W = (w 1, …, w m ), 0  W < M = p 1. …. p m ? W  M / 2 ? - convert W to scalar representation: M 0 W

117 W = (w 1, …, w m ), 0  W < M = p 1. …. p m ? W  M / 2 ? - convert W to scalar representation: W = α. M α ϵ  0,1) M 0 W

118 W = (w 1, …, w m ), 0  W < M = p 1. …. p m ? W  M / 2 ? - convert W to scalar representation: W = α. M α ϵ  0,1) M 0 W

119 W = (w 1, …, w m ), 0  W < M = p 1. …. p m ? W  M / 2 ? - convert W to scalar representation: W = α. M α ϵ  0,1) W  M / 2 iff α  1 / 2 M 0 W

120 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i

121 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end

122 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end integer arithmetic modulo p i

123 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end integer arithmetic modulo p i O(log p m ) space

124 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end integer arithmetic modulo p i O(log p m ) space log p m  O(loglog Z)

125 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end real arithmetic

126 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end real arithmetic O(loglog Z) space

127 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end real arithmetic O(loglog Z) space truncated to ℓ  3. loglog(Z) bits

128 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end real arithmetic O(loglog Z) space truncated to ℓ  3. loglog(Z) bits numeric error 1 ε   2 ℓ 2p m

129 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i numeric error 1 ε   2 ℓ 2p m M 0 ½.M

130 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i numeric error 1 ε   2 ℓ 2p m M 0 ½.M α.M ε

131 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i numeric error 1 ε   2 ℓ 2p m M 0 ½.M α.M ε

132 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i numeric error 1 ε   2 ℓ 2p m M 0 ½.M α.M ε

133 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i numeric error 1 ε   2 ℓ 2p m M 0 ½.M α.M ε

134 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i M’= M / p m W’= (w 1, …, w m-1 ) W  ½. M iff W’  ½. M’ numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ M p m M p m M p m M p m α ’.M ’ ε

135 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i M’= M / p m W’= (w 1, …, w m-1 ) W  ½. M iff W’  ½. M’ re-run for m := m-1 numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ M p m M p m M p m M p m α ’.M ’ ε

136 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i m := m-1 numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ M p m M p m M p m M p m α ’.M ’ ε

137 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i m := m-1 numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ M p m M p m M p m M p m α ’.M ’ ε

138 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end m := m-1 numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ M p m M p m M p m M p m α ’.M ’ ε

139 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end m := m-1 numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ M p m M p m M p m M p m α ’.M ’ ε

140 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ α ’.M ’ ε

141 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ α ’.M ’ ε

142 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ α ’.M ’ ε

143 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ εα ’.M ’

144 ε W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ½.M ’ α ’.M ’

145 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 ε

146 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 m := m-1 ε

147 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 m := m-1 ε

148 W = (w 1, …, w m ), 0  W < M = p 1. …. p m m m α = [1] Σ ( [p i ] Π p j ) [ p i] -1 [p i ]. w i / p i  1 / 2 ? i=1 j=1, j  i α := 0.00 for i := 1, …, m do c := 1 for j := 1, …, m do if j ≠ i then c := c [p i ]. p j end c := c [ p i] -1 ; c := c [p i ]. w i φ := c / p i α := α [1] + φ end numeric error 1 ε   2 ℓ 2p m M 0 ε M’M’ 0 m := m-1 … repeated until the question W  M / 2 is solved ε

149 un-Primes, un-Composites ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n)

150 un-Primes, un-Composites ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) ϵ accept-ASPACE x REVERSALS(loglog n)

151 un-Primes, un-Composites ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) ϵ accept-ASPACE x REVERSALS(loglog n) --optimal, cannot be improved

152 un-Primes, un-Composites ϵ accept-ASPACE(loglog n) ϵ pebble-DSPACE(loglog n) ϵ accept-ASPACE x REVERSALS(loglog n) --optimal, cannot be improved below loglog n, only regular languages accepted (even with the help of alternation)

153 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) PspaceDSPACE(n O(1) )  un-DSPACE(log O(1) n)|| NSPACE(n O(1) )un-NSPACE(log O(1) n) ExptimeASPACE(n O(1) )  un-ASPACE(log O(1) n)

154 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) PspaceDSPACE(n O(1) )  un-DSPACE(log O(1) n)|| NSPACE(n O(1) )un-NSPACE(log O(1) n) ExptimeASPACE(n O(1) )  un-ASPACE(log O(1) n) Primes

155 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) PspaceDSPACE(n O(1) )  un-DSPACE(log O(1) n)|| NSPACE(n O(1) )un-NSPACE(log O(1) n) ExptimeASPACE(n O(1) )  un-ASPACE(log O(1) n) Primes un-Primes

156 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) PspaceDSPACE(n O(1) )  un-DSPACE(log O(1) n)|| NSPACE(n O(1) )un-NSPACE(log O(1) n) ExptimeASPACE(n O(1) )  un-ASPACE(log O(1) n) Primes un-Primes +factoring

157 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) PspaceDSPACE(n O(1) )  un-DSPACE(log O(1) n)|| NSPACE(n O(1) )un-NSPACE(log O(1) n) ExptimeASPACE(n O(1) )  un-ASPACE(log O(1) n) Primes  ? un-Primes +factoring

158 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) Positive answer: Primes  ? un-Primes +factoring

159 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) Positive answer: -- deterministic factoring in polynomial time Primes  ? un-Primes +factoring

160 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) Positive answer: -- deterministic factoring in polynomial time (breaking cryptographic security) Primes  ? un-Primes +factoring

161 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) Negative answer: Primes  ? un-Primes +factoring

162 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) Negative answer: un-L  accept-ASPACE(loglog n) Primes  ? un-Primes +factoring

163 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) Negative answer: un-L  accept-ASPACE(loglog n) L  ASPACE(log n) = P Primes  ? un-Primes +factoring

164 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) Negative answer: un-L  accept-ASPACE(loglog n) L  ASPACE(log n) = P  NSPACE(log n) Primes  ? un-Primes +factoring

165 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) Negative answer: un-L  accept-ASPACE(loglog n) L  ASPACE(log n) = P  NSPACE(log n) Primes  ? NL versus NP un-Primes +factoring

166 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) PspaceDSPACE(n O(1) )  un-DSPACE(log O(1) n)|| NSPACE(n O(1) )un-NSPACE(log O(1) n) ExptimeASPACE(n O(1) )  un-ASPACE(log O(1) n) Primes  ? un-Primes +factoring

167 LDSPACE(log n)  un-DSPACE(loglog n) NLNSPACE(log n)  un-NSPACE(loglog n) PASPACE(log n)  un-ASPACE(loglog n) PspaceDSPACE(n O(1) )  un-DSPACE(log O(1) n)|| NSPACE(n O(1) )un-NSPACE(log O(1) n) ExptimeASPACE(n O(1) )  un-ASPACE(log O(1) n) Primes  ? un-Primes +factoring Primes ?

168 Thank You for Your Attention

169 Thank You for Your Attention

170 Thank You for Your Attention

171


Κατέβασμα ppt "Factoring and Testing Primes in Small Space Viliam Geffert P.J.Šafárik University, Košice, Slovakia Dana Pardubská Comenius University, Bratislava, Slovakia."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google