Κατέβασμα παρουσίασης
Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε
ΔημοσίευσεLucinda Antunes Bandeira Τροποποιήθηκε πριν 6 χρόνια
1
Poluprovodnici Poluprovodnički materijali predstavljaju osnovu moderne elektronike Energetski procep predstavlja minimalnu energiju neophodnu da elektron izađe iz valentnog opsega Specifična električna otpornost poluprovodnika je u opsegu of 10-6 Ωm do 1010 Ωm Najvažniji poluprovodnički materijali su: Silicijum (Si) Germanijum (Ge) Galijum-Arsenid (GaAs) Energetski procep je za većinu materijala manji od 3 eV, premda postoje poluprovodnici i sa nešto većim procepom (do 9 eV)
2
Poluprovodnici Energija elektrona odgovara nekim diskretnim energetskim nivoima Izolatori imaju veoma širok zabranjeni opseg između valentnog i provodnog opsega Poluprovodnici imaju uzan zabranjeni opseg između valentnog i provodnog opsega Kod metala valentni i provodni opseg su veoma blizu
3
Kristalna struktura čistog silicijuma
Poluprovodnici Čist kristal silicijuma ima strukturu koja se sastoji od atoma sa četiri kovalentne veze prema susednim atomima Valentne veze se mogu pokidati, odnosno pojedini elektroni mogu dobiti dovoljno energije da pobegnu iz atoma i postanu slobodni elektroni Nedostajući elektron u valentnoj vezi se zove “šupljina” i ponaša kao pozitivno naelektrisanje Elektron iz neke od susednih valentnih veza može popuniti mesto nedostajućeg elektrona u šupljini tako da atom ponovo postane neutralan. Ovo je ekvivalentno sa kretanjem šupljina Kristalna struktura čistog silicijuma
4
N tip poluprovodnika Provodljivost silicijuma se može povećati ukoliko se određeni materijali dodaju u kristalnu strukturu. Ovaj proces se naziva dopiranje silicijuma Materijali kao što su fosfor, arsen, kao i drugi elementi koji imaju pet valentnih elektrona (elementi pete grupe), dovode do povećanja broja slobodnih elektrona ukoliko se dodaju silicijumu. Ovakve nečistoće se nazivaju donorskim nečistoćama. Dopirani silicijum se naziva n-tip silicijuma Broj slobodnih elektrona u n-tipu silicijuma je određen koncentracijom donorskih nečistoća Kristalna struktura silicijuma sa donorskim nečistoćama
5
Dopirani poluprovodnik ostaje električno neutralan
P tip poluprovodnika Ukoliko se u kristalnu strukturu silicijuma dodaju male količine materijala sa tri valentna elektrona, kao što su na primer bor, indijum ili drugi elementi treće grupe, pojaviće se dodatne šupljine Ovakve nečistoće se nazivaju akceptorskim nečistoćama, a ovako dopirani silicijum, silicijumom p-tipa Dopirani poluprovodnik ostaje električno neutralan Kristalna struktura silicijuma sa akceptorskim nečistoćama
6
Električno ponašanje PN spoja
Poluprovodnike P i N tipa možemo spojiti u PN spoj Pojavljuje se unutrašnje električno polje usled rekombinacije elektrona i šupljina na spoju P i N tipa poluprovodnika
7
Nepolarisan PN spoj potencijalna razlika zaprečnog sloja (oblasti prostornog tovara) je U0 - struja elektrona i šupljina Ii - struja sporednih nosilaca Is
8
Pozitivno polarisan PN spoj
Ukoliko se PN spoj pozitivno polariše, dolazi do smanjenja oblasti prostornog tovara Ako je napon polarizacije veći od napona potencijalne barijere, U0, PN spoj počinje da provodi
9
Inverzno polarisan PN spoj
Ukoliko se PN spoj inverzno polariše, dolazi do širenja oblasti prostornog tovara čime se dodatno blokira protok naelektrisanja PN spoj predstavlja najprostiji poluprovodnički element koji altenativno zovemo dioda
10
- karakteristika diode
UT predstavlja napon potencijalne barijere Za silicijumske diode UT je u opsegu od 0,6 do 0,8 V Za germanijumske diode UT je oko 0,2 V Ukoliko se napon inverzne polarizacije dovoljno poveća, na nekom naponu Ub, doći će do proboja i dioda će početi da provodi
12
Posebne vrste PN spojeva
termistor varikap dioda fotodioda led dioda tunelska dioda Zener dioda
13
Zenerove ili probojne diode
Konstruišu se da rade u oblasti inverzne polarzacije Dioda može da radi i u oblasti proboja, pod uslovom da ne dolazi do pregrevanja diode (toplota je proporcionalna proizvodu struje, napona i vremena)
15
Usmeravanje naizmenične struje
- Jedna od najvažnijih primena dioda je za usmeravanje naizmenične struje - idealni usmerač - idealni ispravljač
16
Jednofazno polutalasno usmeravanje
- statička otpornost diode R - Karakteristika diode se linearizuje, radi lakše računice
18
Jednofazno polutalasno usmeravanje
- od w t = 0 do wt = p
19
Jednofazno polutalasno usmeravanje
Srednja vrednost struje Srednja snaga potrošača Efektivna vrednost struje Ukupna snaga Koeficijent korisnog dejstva Jednofaznim polutalasnim usmeravanjem je moguće postići efikasnost od 40,5% pod uslovom da je statička otpornost diode mnogo manja od otpornosti potrošača
20
Dvofazno polutalasno usmeravanje
22
Srednja vrednost struje
Dvofazno polutalasno usmeravanje Srednja vrednost struje
23
Dvofazno polutalasno usmeravanje
Srednja snaga potrošača Efektivna vrednost struje Ukupna snaga Koeficijent korisnog dejstva Dvofaznim polutalasnim usmeravanjem je moguće postići efikasnost od 81% pod uslovom da je statička otpornost diode mnogo manja od otpornosti potrošača
24
Jednofazno punotalasno usmeravanje
Srednja vrednost struje:
26
Faktor talasnosti
27
- jednofazno polutalasno usmeravanje
- dvofazno polutalasno ili jednofazno punotalasno usmeravanje
28
- kapacitivni filter vezan na kraj jednofaznog polutalasnog usmerača
30
- kapacitivni filter vezan na kraj dvofaznog polutalasnog ispravljača
31
LC filter
32
Dioda kao ograničavač napona
33
Višefazno usmeravanje
34
Srednja vrednost napona:
Višefazno usmeravanje Srednja vrednost napona:
Παρόμοιες παρουσιάσεις
© 2024 SlidePlayer.gr Inc.
All rights reserved.