1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κατανομή Poisson, Διαδικασίες Γεννήσεων- Θανάτων (Birth-Death Processes) Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Διαδικασίες Markov, Εκθετική Κατανομή, Κατανομή Poisson
Advertisements

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης
Δίκτυα Ουρών - Παραδείγματα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων-Θανάτων (Birth-Death), Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1 Β. Μάγκλαρης
Ανάλυση – Προσομοίωση Ουρών Markov
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Διαδικασίες Γεννήσεων – Θανάτων (Birth-Death Processes)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Εισαγωγή II ΣΥΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Κοινά χαρακτηριστικά (1) –Πελάτης (όχημα, πελάτης καταστήματος, τηλεφωνική κλήση, πακέτο δεδομένων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 18/04/13 Συστήματα Αναμονής: M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κατανομή Poisson, Διαδικασίες Markov, Διαδικασίες Γεννήσεων-Θανάτων (Birth-Death) Β. Μάγκλαρης
Το Μ/Μ/1 Σύστημα Ουράς Μ (η διαδικασία αφίξεων είναι Poisson) /
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B) Β. Μάγκλαρης
1 Χαρακτηριστικά ενός Μ/Μ/1 συστήματος : Αφίξεις κατανεμημένες κατά Poisson Εκθετικά κατανεμημένοι χρόνοι εξυπηρέτησης Οι χρόνοι εξυπηρέτησης είναι αμοιβαία.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 16/05/13 Δίκτυα Ουρών. ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ ΕΝ ΣΕΙΡΑ Θεώρημα Burke: Η έξοδος πελατών από ουρά Μ/Μ/1 ακολουθεί κατανομή Poisson.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/04/13 Διαδικασίες Γεννήσεων-Θανάτων (Birth- Death), Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Προσομοιώσεις Συστημάτων Αναμονής Markov (M/M/…)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 25/06/08 Ασκήσεις Επανάληψης.
Ασκήσεις - Παραδείγματα
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
Χαρακτηριστικά ενός Μ/Μ/1 συστήματος :
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 20/06/08 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Προσομοιώσεις Συστημάτων Αναμονής Markov (M/M/…) Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου.
ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΟΣ MARKOV ΓΙΑ ΠΡΟΩΘΗΣΗ ΚΙΝΗΣΗΣ STREAMING (VIDEO) Άσκηση Προσομοίωσης 28/5/2012.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 07/05/09 Εκθετική Κατανομή, Διαδικασίες Birth-Death.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Επανάληψη (1): Παράμετροι αξιολόγησης συστημάτων αναμονής –Μέσος ρυθμός απωλειών λ – γ.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 01/06/05 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Δικτύων και Υπολογιστικών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 2/03/05. ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Μοντέλα συμφόρησης (congestion) –Κυκλοφορία (οδική, σταθερής τροχιάς) –Ουρές σε καταστήματα, ταχυδρομεία,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Κοινά χαρακτηριστικά (1) –Πελάτης (όχημα, πελάτης καταστήματος, τηλεφωνική κλήση, πακέτο.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 27/05/10 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 04/07/07 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Περιεχόμενα (1/3) 1.Εισαγωγή Περιεχόμενα Γενική Περιγραφή Συστημάτων Αναμονής Τεχνικές.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 20/06/07 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 21/05/09 Διαδικασίες Birth-Death, Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/04/11 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/06/08 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 27/06/07 Ουρές Markov Μ/Μ/Ν/Κ.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 28/05/08 Διαδικασίες Γεννήσεων Θανάτου Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 5/07/06 Παραδείγματα Ανάλυσης Ουρών Markov και Μοντελοποίησης Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 12/07/06 Ανάλυση Ουρών Markov Μ/Μ/Ν/Κ Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 13/06/07 Διαδικασίες Γεννήσεων Θανάτου Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 06/05/10 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 23/04/12 Διάγραμμα Μετάβασης Καταστάσεων, Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εργοδικές Πιθανότητες, Ισορροπία Μεταβάσεων - Ουρές Μ/Μ/1 Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου.
Ουρές Αναμονής.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα Ανοικτών Δικτύων Ουρών Κλειστά Δίκτυα Ουρών Β. Μάγκλαρης Σ. Παπαβασιλείου.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές Markov (birth-death processes) Ουρές Μ/Μ/N/K - Erlang C Ουρές M/M/c/c - Erlang B Παραδείγματα Εφαρμογής Βασίλης.
Σήματα και Συστήματα ΙΙ Διάλεξη: Εβδομάδα Καθηγητής Πέτρος Γρουμπός Επιμέλεια παρουσίασης: Βασιλική Μπουγά 1.
Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Συνεχείς - Διακριτές τυχαίες μεταβλητές Η απεικόνιση των εκβάσεων ενός πειράματος τύχης στην ευθεία των πραγματικών αριθμών.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα Εφαρμογής Άσκηση Προσομοίωσης Βασίλης Μάγκλαρης 6/4/2016.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής – Τύπος Little Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson Βασίλης Μάγκλαρης
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon – Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης 11/5/2016.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή
Ανάλυση Εισόδου και Εξόδου Προσομοίωσης
Θεωρία Γραμμών Αναμονής ή ΟΥΡΕΣ (QUEUE)
Εισαγωγή στην Στατιστική
Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών
Βασίλης Μάγκλαρης 2/3/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Βασίλης Μάγκλαρης
Η Έννοια της τυχαίας Διαδικασίας
Βασίλης Μάγκλαρης 13/4/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανοικτά Δίκτυα Ουρών Markov Θεωρήματα Burke & Jackson Βασίλης Μάγκλαρης.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών
Βασίλης Μάγκλαρης 1/6/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Μετασχηματισμοί & Ροπογεννήτριες Συναρτήσεις.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή
Βασίλης Μάγκλαρης 16/3/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ιδιότητες Κατανομής Poisson & Εκθετικής Κατανομής Διαδικασίες Γεννήσεων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
Μεταγράφημα παρουσίασης:

1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κατανομή Poisson, Διαδικασίες Γεννήσεων- Θανάτων (Birth-Death Processes) Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου

Επανάληψη (1): Παράμετροι συστημάτων αναμονής –Αριθμός πελατών (κατάσταση) n(t), στοχαστική ανέλιξη – χρονοσειρά (stochastic process, time series) –Μέσος αριθμός πελατών Ε{n(t)} –Μέσος χρόνος καθυστέρησης (average time delay) = Μέσος χρόνος αναμονής (waiting time) + Μέσος χρόνος εξυπηρέτησης E(T) = E(W) + E(s)

Επανάληψη (2): Παράμετροι συστημάτων αναμονής – Τύπος Little –n(t): Κατάσταση συστήματος αναμονής –n q (t) : Αριθμός πελατών στην αναμονή –n s (t) : Αριθμός πελατών στην εξυπηρέτηση –n(t) = n q (t) + n s (t) –E{n(t)} = E{n q (t)} + E{n s (t)} –Χρόνος καθυστέρησης: Τ = W + s Ε(Τ) = E(W) + E(s) –Χρόνος καθυστέρησης Τ = W + s Ε(Τ) = Ε(n)/γ (Τύπος Little)

Επανάληψη (3): Η εκθετική κατανομή (exponential distribution) Μια τυχαία μεταβλητή (τ.μ.) - random variable Χ ακολουθεί εκθετική κατανομή με παράμετρο λ όταν: F χ (t) = P[X ≤ t] = 1-exp(-λt), f Χ (t) = λ exp(-λt) για t ≥ 0 F χ (t) = f Χ (t) = 0 για t < 0 E(Χ) = 1/λ, var(Χ) = 1/λ 2 Ιδιότητα έλλειψης μνήμης P[X>t+s/X>t] = P[X>s] Κατανομή ελαχίστου μεταξύ ανεξάρτητων τ.μ. εκθετικά κατανεμημένων Χ 1 : με παράμετρο λ 1 Χ 2 : με παράμετρο λ 2 Χ = min{Χ 1,Χ 1 } είναι εκθετικά κατανεμημένη με παράμετρο λ = λ 1 +λ 2

Επανάληψη (4): Στοχαστικές διαδικασίες (Stochastic Processes – Time Series) Στάσιμες διαδικασίες (stationary stochastic processes) Διαδικασίες Markov, ιδιότητα έλλειψης μνήμης P[X(t n+1 )=x n+1 /X(t n )=x n, X(t n-1 )=x n-1,…,X(t 1 )=x 1 ] = P[X(t n+1 )=x n+1 /X(t n )=x n ] Εργοδικότητα (ergodicity) ως προς τον μέσο όρο Διαδικασίες Γεννήσεων-Θανάτων (birth – death processes): αποτελούν μια κλάση των διαδικασιών Markov, με την επιπλέον συνθήκη ότι μεταβάσεις επιτρέπονται μόνο ανάμεσα σε γειτονικές καταστάσεις Διαδικασία απαρίθμησης γεγονότων (counter processes) P[N(t) = k]: Πιθανότητα k γεγονότων στο διάστημα (0, t) Στάσιμες αυξήσεις (stationary increments): Ανεξάρτητα του χρόνου αναφοράς t P[N(t + Δt) - N(t) = k] = P[N(τ + Δt) - N(τ) = k] = P[N(Δt) = k]

Η κατανομή Poisson k αφίξεις σε διάστημα t με πιθανότητα P[n(t) = k] = P k (t) = e –λt (λt) k / k ! k = 0,1,2,… E t (n) = λt Var t (n) = λt Μέσος ρυθμός αφίξεων : λ πελάτες/sec ανεξάρτητα από χρόνο αναφοράς (στάσιμες αυξήσεις)

Η κατανομή Poisson σαν όριο Διωνυμικής Κατανομής (Poisson as a limit of Binomial Distribution)

Ιδιότητες διαδικασίας Poisson Οι χρόνοι μεταξύ διαδοχικών αφίξεων μιας διαδικασίας Poisson με ρυθμό λ, είναι τ.μ. εκθετικά κατανεμημένες με μέση τιμή 1/λ Υπέρθεση ανεξάρτητων διαδικασιών Poisson λ 1, λ 2  διαδικασία Poisson λ = λ 1 + λ 2 Διάσπαση διαδικασίας Poisson λ με πείραμα Bernoulli p, q = 1-p  ανεξάρτητες διαδικασίες Poisson λ 1 = pλ λ 2 = qλ

Διαδικασία Γεννήσεων – Θανάτων (Birth-Death Process,1/2) Παραδοχές: –Ανεξαρτησία γεννήσεων-θανάτων –Εξέλιξη βασισμένη στο παρόν (Markov) Σύστημα Διαφορικών εξισώσεων Διαφορών –Κατάσταση ισορροπίας (steady state) –Την χρονική στιγμή t όταν το σύστημα καταλήγει σε πληθυσμό n > 0 μπορεί να έχουν προηγηθεί οι ακόλουθες μεταβάσεις από την χρονική στιγμή t-Δt, Δt  0: Μία άφιξη στο διάστημα Δt, με πιθανότητα λ n-1 Δt Μια αναχώρηση, με πιθανότητα μ n+1 Δt Τίποτα από τα δύο, με πιθανότητα 1 - (λ n +μ n )Δt –Η εξίσωση μετάβασης (Chapman - Kolmogorov) προκύπτει από τον τύπο συνολικής πιθανότητας: P n (t) = λ n-1 Δt P n-1 (t-Δt) + μ n+1 Δt P n+1 (t-Δt) + [1- (λ n +μ n )Δt] P n (t-Δt)

Διαδικασία Γεννήσεων – Θανάτων (Birth-Death Process, 2/2) Στο όριο, Δt  dt: [P n (t) - P n (t-dt)]/dt = λ n-1 P n-1 (t) + μ n+1 P n+1 (t) – (λ n +μ n )P n (t) ή dP n (t)/dt = λ n-1 P n-1 (t) + μ n+1 P n+1 (t) – (λ n +μ n )P n (t) και σε σταθερή κατάσταση t  ∞ (αν υπάρχει) : P n (t) = P n : Εργοδικές Πιθανότητες (λ n +μ n )P n = λ n-1 P n-1 + μ n+1 P n+1 (εξισώσεις ισορροπίας)

Εξισώσεις Ισορροπίας (Balance Equations) Απείρως επισκέψιμες καταστάσεις n - positive recurrent states: Με μη μηδενικές εργοδικές πιθανότητες P n (t) = P n > 0, n = 0,1, … Ερμηνεία Εξισώσεων Ισορροπίας: #{μεταβάσεων προς την κατάσταση s} = #{μεταβάσεων εκτός της s} (σφαιρική ισορροπία – global balance equations) #{μεταβάσεων s 1  s 2 } = #{μεταβάσεων s 2  s 1 } (τοπική ισορροπία – local balance equations) Λόγω εργοδικότητας : σε μεγάλο χρονικό διάστημα παρατήρησης Τ, με Τ 1 και Τ 2 τους συνολικούς χρόνους παραμονής στις s 1, s 2 : (1)#{μεταβάσεων s 1  s 2 } = T 1 x r 1,,2 (2) #{μεταβάσεων s 2  s 1 } = T 2 x r 2,,1 Όπου r 1,2, r 2,1 οι μέσοι ρυθμοί μετάβασης από 1  2 και 2  1 Λόγω ισορροπίας: (1) = (2), r 1,2 x {T 1 /Τ} = r 2,1 x {T 2 /Τ}, ή r 1,2 x P 1 = r 2,1 x P 2