ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 12: Σχήματα ανώτερης τάξης Χειμερινό εξάμηνο 2008.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Tάσος Μπούντης Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών
Advertisements

Μαθηματικοί Υπολογισμοί Χειμερινό Εξάμηνο η Διάλεξη Δημιουργία Συναρτήσεων με Ημιτονοειδή Δεκέμβρη 2002.
Διάθλαση σε 2 διαστάσεις
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z.
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο. Ακρότατα συνάρτησης FindMinimum[x Cos[x],{x,2}] { ,{x  }} Plot[x Cos[x],{x,0,20}] FindMinimum[{x.
9 Οκτώβρη 2002.
Μαθηματικοί Υπολογισμοί Χειμερινό Εξάμηνο η Διάλεξη Επίλυση Εξισώσεων Νοέμβρη 2002.
Robustness in Geometric Computations Christoph M. Hoffmann.
Περιβάλλον Προσομοίωσης & Τεχνικές Σχεδίασης
Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
13 & 18 Νοέμβρη 2002.
Γ΄ κατεύθυνση Προβληματισμοί για τους ορισμούς, θεωρήματα, παραδείγματα και τις ασκήσεις του 3ου κεφαλαίου
Αριθμητικές Μέθοδοι Βελτιστοποίησης Θεωρία & Λογισμικό Τμήμα Πληροφορικής - Πανεπιστήμιο Ιωαννίνων Ι. Η. Λαγαρής.
3) Αριθμητικές Μέθοδοι Συστήματα μη-γραμμικών διαφορικών εξισώσεων με μερικές παραγώγους δεν μπορούν να λυθούν με τις γνωστές αναλυτικές μεθόδους. Για.
Η. Τζιαβός - Γ. Βέργος Σήματα και φασματικές μέθοδοι στη γεωπληροφορική 2014/2015ΑΠΘ/ΤΑΤΜ Τομέας Γεωδαισίας και Τοπογραφίας 3 ο Εξάμηνο Σήματα και Φασματικές.
Μερικές Διαφορικές Εξισώσεις ΙΙ
ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΔΙΑΦΟΡΙΚΟ.
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Προσαρμοστικοί Αλγόριθμοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αλγόριθμος.
Εργαστήριο Δασικής Διαχειριστικής & Τηλεπισκόπησης Δασική Διαχειριστική Ι Διδάσκων Δημήτριος Καραμανώλης, Επίκουρος Καθηγητής Μάθημα 3 ο.
 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον:  Τεχνικές Διδασκαλίας.
Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο.
Διάλεξη 14: Εισαγωγή στη ροή ρευστών
Μετασχηματισμός Fourier
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των.
Υπολογιστική Ρευστομηχανική Ενότητα 5: Χρονικά Μεταβαλλόμενη Διάχυση Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Μεταβατική απόκριση ενός συστήματος δεύτερης τάξης Σχήμα 5.7 σελίδα 370.
 Παρουσίαση αποτελεσμάτων αναλυτικής διερεύνησης τιμών ελατηρίων και αποσβεστήρων για επιφανειακά θεμέλια σε ρευστοποιήσιμο έδαφος. Επίδραση της συχνότητας,
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 4η Δειγματοληψία.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
Συμπληρωματική Πυκνότητα Ελαστικής Ενέργειας Συμπληρωματικό Εξωτερικό Έργο W: Κανονικό έργο Τελικές δυνάμεις Ρ, τελικές ροπές Μ, ολικές μετατοπίσεις δ.
. 8η Διάλεξη Παρεμβολή Hermite
ΜΕΘΟΔΟΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ - ΑΣΥΜΜΕΤΡΙΑΣ - ΚΥΡΤΩΣΕΩΣ
Μικροοικονομία Διάλεξη 2.
Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή
Θεωρία Σημάτων και Συστημάτων 2013
Προβλήματα Ικανοποίησης Περιορισμών
Το παράδειγμα της μικροταινίας
Ειδικές διαλέξεις 1: Εισαγωγή στο tecplot
Μηχανική Ρευστών Ι Ενότητα 7: Θεμελιώδεις αρχές διατήρησης – Μάζα
ΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, διαλ. 6
MEASUREMENT TECHNIQUES
Διάλεξη 15: O αλγόριθμος SIMPLE
Ενότητα 10: Καμπύλες κόστους
Κλασσική Μηχανική Ενότητα 8: ΟΙ ΕΞΙΣΩΣΕΙΣ LAGRANGE
Διάλεξη 4: Εξίσωση διάχυσης
ΜΑΘΗΜΑ: ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΣΑΡΡΗΣ ΙΩΑΝΝΗΣ
Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων
ΚΑΜΠΥΛΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΑΙ ΣΤΟ ΧΩΡΟ
ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΓΡΑΜΜΑΤΩΝ BODE ΜΕΤΡΟΥ ΚΑΙ ΦΑΣΗΣ
Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
ΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, διαλ. 7
Εισαγωγή στο Γραμμικό Προγραμματισμό
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια)
Ψηφιακός Έλεγχος διάλεξη Παρατηρητές Ψηφιακός Έλεγχος.
Ανάλυση της εικόνας 4-25 (Rabaey)
Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ.
Διάλεξη 2: Συστήματα 1ης Τάξης
Μη Γραμμικός Προγραμματισμός
Δυναμικός Κατακερματισμός
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
Μεταγράφημα παρουσίασης:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 12: Σχήματα ανώτερης τάξης Χειμερινό εξάμηνο 2008

Προηγούμενη παρουσίαση... Εξετάσαμε μερικά σχήματα ανώτερης τάξης για την μόνιμη εξίσωση συναγωγής που βασίζονται σε σειρές Taylor Είδαμε σχήματα που εισάγουν τεχνητή διάχυση

Οργάνωση παρουσίασης Θα αρχίσουμε να δουλεύουμε πιθανούς τρόπους για τον περιορισμό των χωρικών ανωμαλιών. Θα δούμε: Τη μονοτονικότητα και θέματα που σχετίζονται με τη μονοτονικότητα Το θεώρημα του Godunov Τη συνολική διακύμανση και θέματα που σχετίζονται με τον περιορισμό της συνολικής διακύμανσης (total variation diminishing, TVD) Μη γραμμικά σχήματα που χρησιμοποιούν limiters

Μονοτονικότητα Για την ελλειπτική εξίσωση διάχυσης και για την παραβολική μη- μόνιμη εξίσωση διάχυσης χωρίς πηγές το διακριτό σύστημα των εξισώσεων μας δίνει: Αυτό κάνει σίγουρο ότι η λύση είναι φραγμένη Για υπερβολικές εξισώσεις,ούτος ή άλλως το φράξιμο δεν είναι χρήσιμη σκέψη

Μετάδοση κύματος (υπερβολική συνάρτηση) Καθώς το κύμα περνάει από το σημείο P, η τιμή του μπορεί να είναι μεγαλύτερη από ότι σε παλιότερες στιγμές και επίσης να είναι μεγαλύτερη εκείνη την στιγμή από τις τιμές των γειτόνων του Πρέπει να σκεφτούμε για το ποιες ιδιότητες της λύσης θέλουμε να προσδώσουμε στο αριθμητικό μας σχήμα

Μονοτονικότητα

Διατήρηση μονοτονικότητας Αν η φ(x,t) είναι μονοτονική στο x, τότε φ(x,t+Δt) είναι επίσης μονοτονική στο x Δεν δημιουργείτε κανένα νέο μέγιστο ή ελάχιστο

Θεώρημα του Godunov Ένα συνεπές (consistent) γραμμικό αριθμητικό σχήμα για την λύση της εξίσωσης διάδοσης κύματος που διατηρεί της μονοτονικότητα μπορεί να έχει το πολύ πρώτης τάξης ακρίβεια. Η ακρίβεια μπορεί να μεγαλώσει ωστόσο σε μη-γραμμικά σχήματα – πρέπει να κάνουμε τους συντελεστές συναρτήσεις του φ έστω και αν το πρόβλημα που λύνουμε είναι γραμμικό

Συνολική διακύμανση Για ένα σύστημα υπερβολικών εξισώσεων, μπορεί να δειχθεί ότι η συνολική διακύμανση (Total Variation, TV) : δεν μεγαλώνει στο χρόνο. Για ένα κινούμενο κύμα, TV(φ) μπορεί να παραμείνει σταθερή σε έναν άπειρο χώρο (μεγάλες διαστάσεις, χωρίς οριακές συνθήκες) όταν δεν υπάρχουν όροι διάχυσης και παραγωγής Σε ένα φυσικό σύστημα με τη παρουσία της διάχυσης, (και για μηδενική παραγωγή της ποσότητας φ) το TV δεν μπορεί να αυξηθεί

Συνολική διακύμανση Η ποσότητα TV(φ) είναι ένα μέτρο των ανωμαλιών του πεδίου Ένα ημιτονοειδές κύμα υψηλής συχνότητας έχει περισσότερη συνολική διακύμανση από ότι ένα κύμα μικρής συχνότητας Λόγω της διακριτοποίησης έχουμε ότι:

Σχήματα ελάττωσης της συνολικής διακύμανσης Ένα αριθμητικό σχήμα ονομάζεται σχήμα ελάττωσης της συνολικής διακύμανσης (Total Variational Diminishing scheme, TVD) εάν Μπορεί να δειχθεί επίσης ότι ένα σχήμα TVD διατηρεί την μονοτονικότητα Τιμή στο τρέχον χρόνο Τιμή στο προηγούμενο χρόνο

Λάθη του σχήματος TVD Αν η αναλυτική λύση είναι TVD, δεν είναι σίγουρο ότι και η αριθμητική λύση (λόγο της διακριτοποίησης) θα είναι. Ας υποθέσουμε ένα κύμα που περνά από το πλέγμα TV =0 TV > 0 Ένα σχήμα που είναι αυστηρά TVD μπορεί να ψαλιδίσει την μορφή του κύματος

Σχήματα τοπικού ελέγχου, LED Η συνθήκη TVD μπορεί μερικές φορές να γίνει ασθενής » Εφόσον μόνο η συνολική διακύμανση μειώνεται, είναι δυνατόν να δημιουργηθούν μικρές τοπικές ασυνέχειες και η συνολική διακύμανση πάλι να μειώνεται Μια άλλη χρήσιμη ιδέα (αν και πιο αυστηρή) είναι αυτή την μείωσης κάθε τοπικής μέγιστης διακύμανσης (local extremum diminishing, LED) » Δεν δημιουργούνται καινούργια μέγιστα » Δεν ενισχύονται ήδη υπάρχοντα μέγιστα Μπορεί να δειχθεί ότι τα σχήματα LED είναι TVD Τα σχήματα LED μπορεί να υποφέρουν από έχουν λάθη λόγο ψαλιδισμού

Σχήματα τοπικού ελέγχου, LED Έχει δημιουργηθεί μια μεγάλη οικογένεια αριθμητικών σχημάτων που είναι LED Είναι μη-γραμμικά σχήματα και χρησιμοποιούν limiters Ένα σχήμα δεύτερης τάξης μπορεί να έχει τιμές στην πλευρά e από τη σχέση: Αυτό μπορεί να προκαλέσει μια τοπική διαταραχή

Limiters Για να αποτρέψουμε την δημιουργία τοπικών διαταραχών, εισάγουμε μια συνάρτηση Ψ(r) σχεδιασμένη για να εγγυείται λύσεις χωρίς αστάθειες Έτσι, η τιμή στη πλευρά φ e μπορεί να βρεθεί από τη σχέση: Χρησιμοποιώντας για παράδειγμα μια απάνεμη διακριτοποίηση για τη κλίση έχουμε:

Εύρος της συνάρτησης Limiter για 2 η τάξης σχήματα Μπορούμε να δείξουμε ότι η συνάρτηση του limiter Ψ(r) πρέπει να έχει τιμές στην γρυ περιοχή για ένα σχήμα δεύτερη τάξης Είναι επίσης καλό να περνάει από το σημείο (1,1) όπως θα δούμε παρακάτω

Συνάρτηση Limiter Minmod Η συνάρτηση Limiter Minmod ορίζεται ως εξής:

Συνάρτηση Limiter superbee Η συνάρτηση Limiter superbee ορίζεται ως εξής:

Ομαλές συναρτήσεις Limiter Θέματα που σχετίζονται με τη σύγκλιση μπορεί να γίνουν προβληματικά όταν χρησιμοποιούμε επαναλυπτικούς επιλυτές εξαιτίας απότομων μεταβολών της κλίσης της συνάρτησης Ψ(r) για τους limiters τύπου minmod και superbee Έχους προταθεί στη βιβλιογραφία διαφορές άλλες πιο ομαλές συναρτήσεις όπως: – Οι limiters τύπου Val Leer και Van Albada – Οι τετραγωνικοί και κυβικοί limiters

Limiter τύπου Van Leer και Van Albada Ο limiter τύπου Van Leer δίνεται από τη σχέση: Ο limiter τύπου Van Albada δίνεται από τη σχέση :

Limiter τύπου Van Leer και Van Albada

Τετραγωνικοί και κυβικοί limiters Πρόκειται για προσεγγίσεις του limiter minmod Quadratic limiter: Cubic limiter Εισάγει διάχυση, όπως και ο limiter minmod » Υπάρχει μια ασυνέχεια στη κλίση για r = 2 » Όχι τόσο απότομος όσο ο minmod για r = 1

Τετραγωνικοί και κυβικοί limiters Επειδή ο limiter δεν ακολουθεί ακριβώς την περιοχή της ακρίβεια 2 ης τάξης, η συνολική ακρίβεια είναι κάτι λιγότερο από δεύτερης τάξης για μερικές τιμές του r

Επίλογος Στη παρούσα διάλεξη είδαμε: Θέματα που σχετίζονται με την μονοτονία και την διατήρησή της Τα σχήματα TVD, LED Σχήματα που χρησιμοποιούν μη γραμμικούς limiters που είναι LED, και έχουν ακρίβεια δεύτερης τάξης