ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
1 • Το μέγεθος του ‘παραθύρου’ πρέπει να αλλάζει με τον αριθμό των συνόδων. • Τόσο η ρυθμαπόδοση όσο και η καθυστέρηση δεν έχουν εγγυήσεις. • Για συνόδους.
Advertisements

Slide 1 Δίκτυα Τηλεπικοινωνιών ENOTHTA 7 η ΔΙΑΚΙΝΗΣΗ ΤΗΛΕΦΩΝΙΚΩΝ ΚΛΗΣΕΩΝ (ΜΕΡΟΣ Α’) 1. ΘΕΩΡΙΑ ΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ  Εκτός από τις τερματικές.
Διαδικασίες Markov, Εκθετική Κατανομή, Κατανομή Poisson
Καθυστέρηση σε δίκτυα μεταγωγής πακέτων
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης
Δίκτυα Ουρών - Παραδείγματα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων-Θανάτων (Birth-Death), Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1 Β. Μάγκλαρης
Ανάλυση – Προσομοίωση Ουρών Markov
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Διαδικασίες Γεννήσεων – Θανάτων (Birth-Death Processes)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Εισαγωγή II ΣΥΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Κοινά χαρακτηριστικά (1) –Πελάτης (όχημα, πελάτης καταστήματος, τηλεφωνική κλήση, πακέτο δεδομένων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 18/04/13 Συστήματα Αναμονής: M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)
Moντέλα Καθυστέρησης και Ουρές
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κατανομή Poisson, Διαδικασίες Markov, Διαδικασίες Γεννήσεων-Θανάτων (Birth-Death) Β. Μάγκλαρης
Το Μ/Μ/1 Σύστημα Ουράς Μ (η διαδικασία αφίξεων είναι Poisson) /
Τεχνικές Μεταγωγής Παράγραφος 1.5.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
Διαχείριση Δικτύων Ευφυή Δίκτυα Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων (NETMODE)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B) Β. Μάγκλαρης
1 Χαρακτηριστικά ενός Μ/Μ/1 συστήματος : Αφίξεις κατανεμημένες κατά Poisson Εκθετικά κατανεμημένοι χρόνοι εξυπηρέτησης Οι χρόνοι εξυπηρέτησης είναι αμοιβαία.
Slide 1 Δίκτυα Τηλεπικοινωνιών ENOTHTA 8 η ΔΙΑΚΙΝΗΣΗ ΤΗΛΕΦΩΝΙΚΩΝ ΚΛΗΣΕΩΝ (ΜΕΡΟΣ B’) 1. ΔΙΑΚΡΙΣΗ ΜΟΝΤΕΛΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ  Για την ταξινόμηση.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Παράδειγμα Βελτιστοποίησης Μέσου Μήκους Πακέτου 23/05/2011.
Ποσοτική Μελέτη Ζεύξεων
ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΟΥΡΩΝ MARKOV 30/05/2011
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 16/05/13 Δίκτυα Ουρών. ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ ΕΝ ΣΕΙΡΑ Θεώρημα Burke: Η έξοδος πελατών από ουρά Μ/Μ/1 ακολουθεί κατανομή Poisson.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/04/13 Διαδικασίες Γεννήσεων-Θανάτων (Birth- Death), Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Προσομοιώσεις Συστημάτων Αναμονής Markov (M/M/…)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 25/06/08 Ασκήσεις Επανάληψης.
1 Βέλτιστη δρομολόγηση (optimal routing) Αντιμετώπιση της δρομολόγησης σαν «συνολικό» πρόβλημα βελτιστoποίησης. Γιατί: Η αλλαγή της δρομολόγησης μιας συνόδου.
Ασκήσεις - Παραδείγματα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 25/04/13 Παραδείγματα χρήσης ουρών Μ/Μ/c/K.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
Χαρακτηριστικά ενός Μ/Μ/1 συστήματος :
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 20/06/08 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Προσομοιώσεις Συστημάτων Αναμονής Markov (M/M/…) Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου.
ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΟΣ MARKOV ΓΙΑ ΠΡΟΩΘΗΣΗ ΚΙΝΗΣΗΣ STREAMING (VIDEO) Άσκηση Προσομοίωσης 28/5/2012.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 07/05/09 Εκθετική Κατανομή, Διαδικασίες Birth-Death.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Επανάληψη (1): Παράμετροι αξιολόγησης συστημάτων αναμονής –Μέσος ρυθμός απωλειών λ – γ.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 01/06/05 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Δικτύων και Υπολογιστικών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 2/03/05. ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Μοντέλα συμφόρησης (congestion) –Κυκλοφορία (οδική, σταθερής τροχιάς) –Ουρές σε καταστήματα, ταχυδρομεία,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Κοινά χαρακτηριστικά (1) –Πελάτης (όχημα, πελάτης καταστήματος, τηλεφωνική κλήση, πακέτο.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 27/05/10 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 04/07/07 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Περιεχόμενα (1/3) 1.Εισαγωγή Περιεχόμενα Γενική Περιγραφή Συστημάτων Αναμονής Τεχνικές.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 20/06/07 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/04/11 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/06/08 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 27/06/07 Ουρές Markov Μ/Μ/Ν/Κ.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 28/05/08 Διαδικασίες Γεννήσεων Θανάτου Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 5/07/06 Παραδείγματα Ανάλυσης Ουρών Markov και Μοντελοποίησης Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 12/07/06 Ανάλυση Ουρών Markov Μ/Μ/Ν/Κ Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 13/06/07 Διαδικασίες Γεννήσεων Θανάτου Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 06/05/10 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εργοδικές Πιθανότητες, Ισορροπία Μεταβάσεων - Ουρές Μ/Μ/1 Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κατανομή Poisson, Διαδικασίες Γεννήσεων- Θανάτων (Birth-Death Processes) Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα Ανοικτών Δικτύων Ουρών Κλειστά Δίκτυα Ουρών Β. Μάγκλαρης Σ. Παπαβασιλείου.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές Markov (birth-death processes) Ουρές Μ/Μ/N/K - Erlang C Ουρές M/M/c/c - Erlang B Παραδείγματα Εφαρμογής Βασίλης.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα Εφαρμογής Άσκηση Προσομοίωσης Βασίλης Μάγκλαρης 6/4/2016.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon – Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης 11/5/2016.
Θεωρία Γραμμών Αναμονής ή ΟΥΡΕΣ (QUEUE)
Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών
Βέλτιστη δρομολόγηση (optimal routing)
ΑΣΚΗΣΗ ΔΙΚΤΥΑ ΜΕΤΑΓΩΓΗΣ
Βασίλης Μάγκλαρης 13/4/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανοικτά Δίκτυα Ουρών Markov Θεωρήματα Burke & Jackson Βασίλης Μάγκλαρης.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών
Βασίλης Μάγκλαρης 16/3/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ιδιότητες Κατανομής Poisson & Εκθετικής Κατανομής Διαδικασίες Γεννήσεων.
Βασίλης Μάγκλαρης 20/4/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανοικτά Δίκτυα Ουρών Markov: Παραδείγματα Εφαρμογής Βασίλης Μάγκλαρης.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
Μεταγράφημα παρουσίασης:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα Β. Μάγκλαρης <maglaris@netmode.ntua.gr> Σ. Παπαβασιλείου <papavass@mail.ntua.gr> 17-7-2014

ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ: ΠΑΡΑΔΟΧΕΣ ΓΙΑ ΚΑΤΑΣΤΑΣΗ ΔΙΚΤΟΥ ΧΩΡΙΣ ΜΝΗΜΗ (Markov) (Επανάληψη) Έξοδος Ουράς Μ/Μ/1 – Θεώρημα Burke Οι αναχωρήσεις πελατών από σύστημα Μ/Μ/1 αποτελούν διαδικασία Poisson Άθροιση – Διάσπαση διαδικασιών Poisson Άθροιση (aggregation) ανεξαρτήτων ροών Poisson λ1, λ2 : Poisson με μέσο ρυθμό λ = λ1 + λ2 Τυχαία Διάσπαση (random split, routing) ροής Poisson μέσου ρυθμού λ με πιθανότητες p, q = 1- p : Παράγει διαδικασίες Poisson με ρυθμούς pλ, (1-p)λ

ΑΝΟΙΚΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (1/2) (Επανάληψη) Θεώρημα Jackson Παραδοχές Ανοικτό δίκτυο ουρών αναμονής Qi με εκθετικούς ρυθμούς εξυπηρέτησης μi Εξωτερικές αφίξεις σε κόμβους i, ανεξάρτητες Poisson μέσου ρυθμό γi Εσωτερική Δρομολόγηση (routing) με τυχαίο τρόπο και πιθανότητα δρομολόγησης πελάτη από τον κόμβο (ουρά) Qi στον κόμβο Qj : rij Οι χρόνοι εξυπηρετήσεις πελατών όπως διαπερνούν το δίκτυο δεν διατηρούν την τιμή τους (έλλειψη μνήμης) αλλά αποκτούν χρόνο εξυπηρέτησης ανάλόγα με την κατανομή του κάθε εξυπηρετητή (Kleinrock’s Independence Assumption, επαληθευμένη με προσομοιώσεις σε δίκτυα με όχι απλοϊκή τοπολογία)

ΑΝΟΙΚΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (2/2) Θεώρημα Jackson Αποτέλεσμα Κατάσταση του δικτύου, διάνυσμα αριθμού πελατών στις ουρές Qi, n =(n1, n2, …) Εργοδική Πιθανότητα (αν υπάρχει): P(n) = P(n1) x P(n2) x … μορφή γινομένου (product form) ανεξαρτήτων ουρών Μ/Μ/1 P(ni) = (1 – ρi) ρini ρi = λi/μi όπου λi ο συνολικός ρυθμός Poisson των πελατών που διαπερνούν την ουρά Qi με ρυθμό εκθετικής εξυπηρέτησης μi Ουρά (γραμμή) συμφόρησης: με το μέγιστο ρi Μέσος αριθμός πελατών στο δίκτυο: E(n) = E(n1) + E(n2) + … Μέση καθυστέρηση τυχαίου πακέτου από άκρο σε άκρο: Ε(Τ) = Ε(n)/γ όπου γ = γ1 + γ2 + ... ο συνολικός ρυθμός πελατών που εισέρχονται στο δίκτυο από έξω (network throughput).

ΕΦΑΡΜΟΓΗ: Δίκτυο Μεταγωγής Πακέτων Θεωρήστε ένα δίκτυο μεταγωγής πακέτων. Όλες οι γραμμές (FDX) θεωρούνται χωρητικότητας 10 Kbits/sec. Το μέσο μήκος του πακέτου είναι 1000 bits (θεωρείστε εκθετική κατανομή). Μεταξύ κόμβων θεωρείστε προσφερόμενους ρυθμούς πακέτων Poisson, με ίσους ρυθμούς r packets/sec (από άκρο σε άκρο). Πακέτα από το Α στο C και αντίστροφα δρομολογούνται εξίσου στους δύο ισότιμους δρόμους: (A-B-C) και (A-D-C). Τα πακέτα μεταξύ κόμβων κατευθείαν συνδεδεμένων (A-B), (A-D), (B-D), (B-C), (D-C) δρομολογούνται κατευθείαν. Α) Βρείτε το ρυθμό r, (ώστε η γραμμή συμφόρησης (με τη μέγιστη χρησιμοποίηση) να είναι 50% Β) Με αναφορά στο Α) βρείτε τη μέση καθυστέρηση ενός τυχαίου πακέτου στο δίκτυο (από άκρο σε άκρο) B Α C D Κόμβος Δικτύου (Δρομολογητής - Router ή Μεταγωγέας Πακέτων - Packet Switch) Τερματικό - Η/Υ

ΑΣΚΗΣΗ 1 Το παρακάτω σχήμα (δίκτυο ουρών αναμονής) παριστά ένα τηλεπικοινωνιακό δίκτυο. Μια ροή κίνησης έντασης εισέρχεται στον κόμβο 1 και διασπάται τυχαία με πιθανότητα 1/3 προς τον κόμβο 2 και με πιθανότητα 2/3 προς τον κόμβο 3. Βρείτε τις εργοδικές κατανομές πιθανοτήτων του αριθμού πακέτων σε κάθε ουρά αναμονής. Βρείτε το μέσο αριθμό πακέτων σε κάθε ουρά και το μέσο χρόνο συστήματος που ακολουθούν τα πακέτα στις διαδρομές (υποροές) 1-2-4 και 1-3-4. Κάθε σύνδεση μεταξύ διαδοχικών ουρών αναμονής μπορεί να θεωρηθεί ως μια ουρά Μ/Μ/1. Σε κάθε περίπτωση

ΑΣΚΗΣΗ 2 Θεωρήστε το παρακάτω δίκτυο. Υπάρχουν 4 σύνοδοι (ροές πακέτων) ACE, ADE, BCEF, BDEF οι οποίες δημιουργούν κίνηση Poisson με ρυθμούς, 200, 400, 800 και 900 πακέτα ανά δευτερόλεπτο αντίστοιχα. Τα μήκη των πακέτων είναι εκθετικά κατανεμημένα με μέση τιμή 1000bits. Όλες οι γραμμές μετάδοσης έχουν χωρητικότητα 5Μbit/sec. Υποθέστε ότι η κάθε γραμμή μετάδοσης μπορεί να θεωρηθεί ως μια Μ/Μ/1 ουρά. Α) Βρείτε το μέσο αριθμό πακέτων στο σύστημα και τη μέση καθυστέρηση ανά πακέτο (ανεξαρτήτως συνόδου). Β) Βρείτε τη μέση καθυστέρηση πακέτου για κάθε μία σύνοδο.

ΑΣΚΗΣΗ 3 Θεωρείστε δύο κανάλια επικοινωνίας, καθένα από τα οποία θα εξυπηρετεί μια ροή πακέτων, όπου όλα τα πακέτα έχουν τον ίδιο σταθερό χρόνο μετάδοσης T και τον ίδιο σταθερό χρόνο μεταξύ διαδοχικών αφίξεων, R>T. Θεωρήστε εναλλακτικά, ότι οι δύο σταθερές ροές συγχωνεύονται με τυχαίο συγχρονισμό έναρξης σε ένα κανάλι διπλής ταχύτητας. Δείξτε ότι ο μέσος χρόνος συστήματος (αναμονή + εξυπηρέτηση) ενός πακέτου θα μειωθεί από T σε μια τιμή μεταξύ T/2 και 3T/4.