Ασκήσεις - Παραδείγματα

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
1 • Το μέγεθος του ‘παραθύρου’ πρέπει να αλλάζει με τον αριθμό των συνόδων. • Τόσο η ρυθμαπόδοση όσο και η καθυστέρηση δεν έχουν εγγυήσεις. • Για συνόδους.
Advertisements

Έλεγχος Συμφόρησης TCP
Slide 1 Δίκτυα Τηλεπικοινωνιών ENOTHTA 7 η ΔΙΑΚΙΝΗΣΗ ΤΗΛΕΦΩΝΙΚΩΝ ΚΛΗΣΕΩΝ (ΜΕΡΟΣ Α’) 1. ΘΕΩΡΙΑ ΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ  Εκτός από τις τερματικές.
Διαδικασίες Markov, Εκθετική Κατανομή, Κατανομή Poisson
Καθυστέρηση σε δίκτυα μεταγωγής πακέτων
Φύλλο εργασίας Ευθύγραμμες κινήσεις.
Μονόμετρα και Διανυσματικά Μεγέθη
Κυκλώματα ΙΙ Διαφορά δυναμικού.
Slide 1 Δίκτυα Τηλεπικοινωνιών ENOTHTA 14 η A.T.M. (ASYNCHRONOUS TRANSFER MODE) (AΣΥΓΧΡΟΝΟΣ ΡΥΘΜΟΣ ΜΕΤΑΦΟΡΑΣ) (ΜΕΡΟΣ Γ’) 1.Δίκτυο μεταφοράς ΑΤΜ  Aποτελείται.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης
Δίκτυα Ουρών - Παραδείγματα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων-Θανάτων (Birth-Death), Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1 Β. Μάγκλαρης
Ανάλυση – Προσομοίωση Ουρών Markov
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Διαδικασίες Γεννήσεων – Θανάτων (Birth-Death Processes)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Εισαγωγή II ΣΥΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Κοινά χαρακτηριστικά (1) –Πελάτης (όχημα, πελάτης καταστήματος, τηλεφωνική κλήση, πακέτο δεδομένων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 18/04/13 Συστήματα Αναμονής: M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)
Moντέλα Καθυστέρησης και Ουρές
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κατανομή Poisson, Διαδικασίες Markov, Διαδικασίες Γεννήσεων-Θανάτων (Birth-Death) Β. Μάγκλαρης
Το Μ/Μ/1 Σύστημα Ουράς Μ (η διαδικασία αφίξεων είναι Poisson) /
Τεχνικές Μεταγωγής Παράγραφος 1.5.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B) Β. Μάγκλαρης
Δίκτυα Ι Βπ - 2ο ΕΠΑΛ ΝΕΑΣ ΣΜΥΡΝΗΣ 2011.
1 Χαρακτηριστικά ενός Μ/Μ/1 συστήματος : Αφίξεις κατανεμημένες κατά Poisson Εκθετικά κατανεμημένοι χρόνοι εξυπηρέτησης Οι χρόνοι εξυπηρέτησης είναι αμοιβαία.
Slide 1 Δίκτυα Τηλεπικοινωνιών ENOTHTA 8 η ΔΙΑΚΙΝΗΣΗ ΤΗΛΕΦΩΝΙΚΩΝ ΚΛΗΣΕΩΝ (ΜΕΡΟΣ B’) 1. ΔΙΑΚΡΙΣΗ ΜΟΝΤΕΛΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ  Για την ταξινόμηση.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Παράδειγμα Βελτιστοποίησης Μέσου Μήκους Πακέτου 23/05/2011.
Ποσοτική Μελέτη Ζεύξεων
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 16/05/13 Δίκτυα Ουρών. ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ ΕΝ ΣΕΙΡΑ Θεώρημα Burke: Η έξοδος πελατών από ουρά Μ/Μ/1 ακολουθεί κατανομή Poisson.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/04/13 Διαδικασίες Γεννήσεων-Θανάτων (Birth- Death), Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1.
Ερωτήσεις Σωστού - Λάθους
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Προσομοιώσεις Συστημάτων Αναμονής Markov (M/M/…)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 25/06/08 Ασκήσεις Επανάληψης.
1 Βέλτιστη δρομολόγηση (optimal routing) Αντιμετώπιση της δρομολόγησης σαν «συνολικό» πρόβλημα βελτιστoποίησης. Γιατί: Η αλλαγή της δρομολόγησης μιας συνόδου.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 25/04/13 Παραδείγματα χρήσης ουρών Μ/Μ/c/K.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
Χαρακτηριστικά ενός Μ/Μ/1 συστήματος :
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 20/06/08 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΟΣ MARKOV ΓΙΑ ΠΡΟΩΘΗΣΗ ΚΙΝΗΣΗΣ STREAMING (VIDEO) Άσκηση Προσομοίωσης 28/5/2012.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 07/05/09 Εκθετική Κατανομή, Διαδικασίες Birth-Death.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Επανάληψη (1): Παράμετροι αξιολόγησης συστημάτων αναμονής –Μέσος ρυθμός απωλειών λ – γ.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 01/06/05 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Δικτύων και Υπολογιστικών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 2/03/05. ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Μοντέλα συμφόρησης (congestion) –Κυκλοφορία (οδική, σταθερής τροχιάς) –Ουρές σε καταστήματα, ταχυδρομεία,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Κοινά χαρακτηριστικά (1) –Πελάτης (όχημα, πελάτης καταστήματος, τηλεφωνική κλήση, πακέτο.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 27/05/10 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 04/07/07 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Περιεχόμενα (1/3) 1.Εισαγωγή Περιεχόμενα Γενική Περιγραφή Συστημάτων Αναμονής Τεχνικές.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 20/06/07 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/04/11 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/06/08 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 27/06/07 Ουρές Markov Μ/Μ/Ν/Κ.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 28/05/08 Διαδικασίες Γεννήσεων Θανάτου Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 5/07/06 Παραδείγματα Ανάλυσης Ουρών Markov και Μοντελοποίησης Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 12/07/06 Ανάλυση Ουρών Markov Μ/Μ/Ν/Κ Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 13/06/07 Διαδικασίες Γεννήσεων Θανάτου Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 06/05/10 Ανάλυση Ουρών Markov.
Ουρές Αναμονής.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα Ανοικτών Δικτύων Ουρών Κλειστά Δίκτυα Ουρών Β. Μάγκλαρης Σ. Παπαβασιλείου.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές Markov (birth-death processes) Ουρές Μ/Μ/N/K - Erlang C Ουρές M/M/c/c - Erlang B Παραδείγματα Εφαρμογής Βασίλης.
ΚΙΝΗΤΕΣ & ΔΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 3 Ο ΚΕΦΑΛΑΙΟ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 1.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα Εφαρμογής Άσκηση Προσομοίωσης Βασίλης Μάγκλαρης 6/4/2016.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon – Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης 11/5/2016.
Θεωρία Γραμμών Αναμονής ή ΟΥΡΕΣ (QUEUE)
ΑΣΚΗΣΗ ΔΙΚΤΥΑ ΜΕΤΑΓΩΓΗΣ
Βασίλης Μάγκλαρης 13/4/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανοικτά Δίκτυα Ουρών Markov Θεωρήματα Burke & Jackson Βασίλης Μάγκλαρης.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών
Δίκτυα Ι Βπ - 2ο ΕΠΑΛ ΝΕΑΣ ΣΜΥΡΝΗΣ 2011.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
Μεταγράφημα παρουσίασης:

Ασκήσεις - Παραδείγματα ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 25/06/09 Ασκήσεις - Παραδείγματα

ΑΣΚΗΣΗ 1 Θεωρήστε ένα απλό δίκτυο με δύο κόμβους που συνδέονται μεταξύ τους με δύο παράλληλους συνδέσμους (γραμμές), όπως φαίνεται στο ακόλουθο σχήμα. Ροή πακέτων με ρυθμό λ=10 πακέτα/sec πρόκειται να δρομολογηθεί από τον κόμβο 1 στον κόμβο 2 (προς μία κατεύθυνση μόνο). Το μέσο μήκος πακέτου είναι 1000 bits. Οι χωρητικότητες των δύο παράλληλων συνδέσμων (γραμμών) είναι C1=20 Kbits/sec και C2=10 Kbits/sec, αντίστοιχα. Αν υποθέσουμε ότι ποσοστό α των πακέτων δρομολογείται από τη γραμμή 1, και ποσοστό (1-α) δρομολογείται από τη γραμμή 2, βρείτε την σχέση που δίνει το μέσο χρόνο καθυστέρησης ενός τυχαίου πακέτου στο σύστημα, και στη συνέχεια υπολογίστε την τιμή του α που ελαχιστοποιεί την καθυστέρηση αυτή. Θεωρήστε ότι οι σύνδεσμοι (γραμμές) μπορούν να μοντελοποιηθούν σαν M/M/1 ουρές.

ΑΣΚΗΣΗ 2 Το παρακάτω σχήμα (δίκτυο ουρών αναμονής) παριστά ένα τηλεπικοινωνιακό δίκτυο. Μια ροή κίνησης έντασης εισέρχεται στον κόμβο 1 και διασπάται τυχαία με πιθανότητα 1/3 προς τον κόμβο 2 και με πιθανότητα 2/3 προς τον κόμβο 3. Βρείτε τις εργοδικές κατανομές πιθανοτήτων του αριθμού πακέτων σε κάθε ουρά αναμονής. Βρείτε το μέσο αριθμό πακέτων σε κάθε ουρά και το μέσο χρόνο συστήματος που ακολουθούν τα πακέτα στις διαδρομές (υποροές) 1-2-4 και 1-3-4. Κάθε σύνδεση μεταξύ διαδοχικών ουρών αναμονής μπορεί να θεωρηθεί ως μια ουρά Μ/Μ/1. Σε κάθε περίπτωση

ΑΣΚΗΣΗ 3 Θεωρήστε ένα σύστημα παρόμοιο με ένα Μ/Μ/1 με τη διαφορά ότι όταν το σύστημα αδειάζει η εξυπηρέτηση των πελατών αρχίζει όταν k πελάτες είναι παρόντες στο σύστημα (k γνωστό). Όταν η εξυπηρέτηση ξεκινήσει συνεχίζει κανονικά μέχρι το σύστημα να αδειάσει ξανά. Α) Σχεδιάστε το διάγραμμα καταστάσεων του συστήματος. Β) Βρείτε τις εργοδικές πιθανότητες καταστάσεων του αριθμού πελατών στο σύστημα Γ) Βρείτε το μέσο αριθμό πελατών στο σύστημα και τη μέση καθυστέρηση ανά πελάτη.

ΑΣΚΗΣΗ 4

ΑΣΚΗΣΗ 5 Για κάθε ένα από τα συστήματα του σχήματος, υπολογίστε το μέσο χρόνο πακέτου στο σύστημα. Συγκρίνετε και επιλέξτε το καλύτερο και το χειρότερο.

ΑΣΚΗΣΗ 6 Σε σύστημα αναμονής Μ/Μ/2/10 με 2 εξυπηρετητές και μέγιστο αριθμό πελατών 10 (συμπεριλαμβανομένων αυτών που εξυπηρετούνται), εφόσον ο αριθμός των πελατών στο σύστημα είναι μικρότερος ή ίσος του k=4 οι αφίξεις δρομολογούνται πάντα στον πρώτο εξυπηρετητή, ο δε δεύτερος παραμένει ανενεργός. Ο δεύτερος εξυπηρετητής ενεργοποιείται μόνο όταν ο αριθμός των πελατών στο σύστημα ξεπεράσει το κατώφλι k=4. Σχεδιάστε το διάγραμμα καταστάσεων του συστήματος (Θεωρήστε ότι ο ρυθμός άφιξης πελατών στο σύστημα είναι λ, ο ρυθμός εξυπηρέτησης του πρώτου εξυπηρετητή είναι μa και ο ρυθμός εξυπηρέτησης του δεύτερου εξυπηρετητή είναι μb).

ΑΣΚΗΣΗ 7

ΑΣΚΗΣΗ 8

Άσκηση 9: Μοντελοποίηση Τηλεφωνικής Ζεύξης ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Άσκηση 9: Μοντελοποίηση Τηλεφωνικής Ζεύξης Μια τηλεφωνική εταιρεία εγκαθιστά σύνδεση μεταξύ δύο πόλεων όπου η αναμενόμενη κίνηση ακολουθεί κατανομή Poisson με ρυθμό 30 calls/min. Η διάρκεια των κλήσεων είναι ανεξάρτητες εκθετικά κατανεμημένες τυχαίες μεταβλητές με μέση τιμή 3 min. Πόσα κυκλώματα θα πρέπει να παρέχει η εταιρεία ώστε να εγγυηθεί ότι η πιθανότητα απόρριψης κλήσης (blocking) (επειδή όλα τα κυκλώματα είναι κατειλημμένα) είναι μικρότερη του 1%

Λύση Θεωρούμε ένα σύστημα M/M/m/m όπου m είναι ο αριθμός κυκλωμάτων (γραμμών) που παρέχει η εταιρεία. Πρέπει να βρούμε τον μικρότερο αριθμό m για τον οποίο pm<0.01 όπου pm Έχουμε  = 30 calls/min, 1/ = 3 min, άρα ρ = / =303 = 90 Erlangs. Με αντικατάσταση στην παραπάνω σχέση υπολογίζουμε την τιμή του m.

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Άσκηση 10: Αξιολόγηση Δρομολογητή Ένας δρομολογητής πακέτων μπορεί να επεξεργάζεται πακέτα με μέσο ρυθμό 300 pkts/sec (packets per second). Τα πακέτα καταφθάνουν στον δρομολογητή κατά μέσο όρο με ρυθμό 200 pkts/sec. Αν μοντελοποιήσουμε το σύστημα σαν M/M/1 Μέσος # πακέτων στο σύστημα: N = λ/(μ-λ) = 200/(300-200) = 2 πακέτα Μέσος # πακέτων σε αναμονή: NQ = λ2/[μ(μ-λ)] = 2002/([300(300-200)] = 1.33 πακέτα Μέσος χρόνος πακέτου στο σύστημα: Τ = 1/(μ-λ) = 1/(300-200) = 0.01 sec = Ν/λ (Νόμος Little) Μέσος χρόνος αναμονής (στην ουρά): W = λ/[μ(μ-λ)] = 2/300 = 0.00666 sec = ΝQ/λ (ΝόμοςLittle) Πιθανότητα να είναι ο εξυπηρετητής απασχολημένος ρ = λ/μ = 2/3 Πιθανότητα το σύστημα να είναι άδειο P0=1- ρ = 0.333

Άσκηση 11: Βελτίωση Επίδοσης ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Άσκηση 11: Βελτίωση Επίδοσης Για να βελτιώσουμε την απόδοση του συστήματος έχουμε δύο επιλογές: Να εγκαταστήσουμε ένα γρηγορότερο επεξεργαστή (αντικαθιστώντας τον παλαιό) Να εγκαταστήσουμε και έναν δεύτερο εξυπηρετητή

Λύση 1η Επιλογή Αντικατάσταση του υπάρχοντος εξυπηρετητή με άλλον γρηγορότερο με ρυθμό  = 400 pkts/second Επαναπροσδιορισμός της απόδοσης του συστήματος Μ/Μ/1 με λ = 200 pkst/sec, μ = 400 pkts/sec και άπειρο μήκος ουράς 2η Επιλογή Έχουμε ένα σύστημα με δύο εξυπηρετητές, ο κάθε ένας με ρυθμό μ = 200 pkts/sec. Η άφιξη των πακέτων γίνεται σε μία ουρά (buffer) με ρυθμό  = 200 pkts/second και μετά δρομολογούνται στον πρώτο εξυπηρετητή που είναι ελεύθερος. Το σύστημα αυτό το μοντελοποιούμε σαν M/M/2 με άπειρο μήκος ουράς ΑΣΚΗΣΗ: Ποίες είναι οι επιδόσεις (μέση καθυστέρηση) των δύο εναλλακτικών; Γιατί;

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Άσκηση 12: Μοντελοποίηση - Σύγκριση ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Άσκηση 12: Μοντελοποίηση - Σύγκριση Δύο υπολογιστές επικοινωνούν με μια γραμμή 64 kbps (kbits/sec) και υποστηρίζει 8 συνόδους (sessions). Αν το μέσο μήκος πακέτου είναι 150 bytes, ο ρυθμός άφιξης ανά σύνοδο (arrival rate/session) είναι 4 packets/second και ακολουθεί Poisson κατανομή, και ο χρόνος εξυπηρέτησης πακέτου είναι εκθετικά κατανεμημένος: Είναι καλύτερα το δίκτυο να παρέχει σε κάθε σύνοδο το δικό της αφιερωμένο (dedicated, αποκλειστική πρόσβαση) 8 kbps κανάλι, ή είναι προτιμότερο όλες οι σύνοδοι να μοιράζονται όλη τη χωρητικότητα της γραμμής? Θεωρείστε ότι ο χρόνος καθυστέρησης του πακέτου είναι το πιο σημαντικό κριτήριο.

Λύση Ας θεωρήσουμε πρώτα το δίκτυο να παρέχει σε κάθε σύνοδο το δικό της (αποκλειστική πρόσβαση) dedicated 8 kbits/sec κανάλι. Τότε κάθε υποσύστημα μπορεί να μοντελοποιηθεί σαν ένα ξεχωριστό M/M/1 σύστημα με =4 packets/sec και ρυθμό εξυπηρέτησης 8 kbits/sec ή ισοδύναμα Θεωρώντας την περίπτωση όπου οι σύνοδοι μοιράζονται όλη τη χωρητικότητα της γραμμής τότε συγχωνεύουμε όλες τις συνόδους και μοντελοποιούμε το σύστημα σαν M/M/1 σύστημα: με =8*4=32 packets/second και ρυθμό εξυπηρέτησης 64 kbits/sec ή ισοδύναμα Προτιμότερη είναι η δεύτερη λύση αφού μειώνει την καθυστέρηση σημαντικά