Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ “Σύνθεση πληροφοριών αισθητήρων για την ασφαλή πλοήγηση έντροχου ρομποτικού οχήματος” Αθανάσιος.
Advertisements

Πιθανότητες & Τυχαία Σήματα
Πιθανότητες & Τυχαία Σήματα
Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας
Εργαστήριο Ψηφιακής Επεξεργασίας Εικόνας
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ.
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 9 ο Κατάτμηση Εικόνας. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και.
ΓΡΗΓΟΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ-ΦΙΛΤΡΑ.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ.
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 10 ο Περιγραφή Σχήματος. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει:  Με βάση τα εξωτερικά χαρακτηριστικά.
Μάθημα 7ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ.
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 8 ο Ανίχνευση Ακμών. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα.
ΔΤΨΣ 150: Ψηφιακή Επεξεργασία Εικόνας © 2005 Nicolas Tsapatsoulis Αποκατάσταση Εικόνας Τμήμα Διδακτικής της Τεχνολογίας και Ψηφιακών Συστημάτων Πανεπιστήμιο.
Δισδιάστατα Σήματα και Συστήματα #1
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ-ΦΙΛΤΡΑ. Σχεδίαση FIR Φίλτρων – Ιδανικές Προδιαγραφές 0πω-π 1 ωcωc -ωc-ωc.
ΗΥ430 ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Προσαρμοστικοί Αλγόριθμοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αλγόριθμος.
Με δεδομένο ότι συνήθη επαγγελματικά προγράμματα ανάλυσης και διαστασιολόγησης κατασκευών δεν παρέχουν την δυνατότητα εν-χρόνω ολοκλήρωσης, στην Δυναμική.
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Θεωρία Στοχαστικών Σημάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών.
Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Προσαρμοστικοί Αλγόριθμοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Παραλλαγές.
Ο Μετασχηματισμός Laplace και ο Μετασχηματισμός Ζ
Παρουσίαση Νο. 11 Ανάλυση Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας.
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 7 ο Συμπίεση Εικόνας. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Οι τεχνικές.
Παρουσίαση Νο. 3 Δισδιάστατα σήματα και συστήματα #2 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Θεωρία Στοχαστικών Σημάτων: Εκτίμηση φάσματος, Παραμετρικά μοντέλα ΒΕΣ.
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
Computational Imaging Laboratory Υπολογιστική Όραση ΤΜΗΥΠ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ.
Παρουσίαση Νο. 1 Εισαγωγή Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος
Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Νοέμβριος ΘΕΣΣΑΛΟΝΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΓΡΑΜΜΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΓΙΑ ΜΕΤΑΔΩΣΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΗΜΑΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ : ΧΑΣΑΝ ΧΑΣΑΝ ΑΕΜ : 5210.
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Προσαρμοστικοί Αλγόριθμοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδρομικός.
Παρουσίαση Νο. 4 Ψηφιακή Καταγραφή Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας.
ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Εισηγητής: Δρ. Αθανάσιος Νικολαΐδης.
Εργαστήριο του μαθήματος “Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας”
ΚΕΦΑΛΑΙΟ 6 ΓΕΩΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ: ΣΗΜΕΙΑ
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Προσαρμοστικοί Αλγόριθμοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αλγόριθμος.
Βασικά Στοιχεία Ψηφιακής Επεξεργασίας Σήματος (ΙΙI)
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 8 ο Ανίχνευση Ακμών. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα.
Μετασχηματισμός Fourier
Ψηφιακή Επεξεργασία Σήματος και Εικόνας
ΕΠΙΣΚΟΠΗΣΗ ΚΑΙ ΠΑΡΟΥΣΙΑΣΗ ΤΕΧΝΙΚΩΝ ΑΠΟΚΑΤΑΣΤΑΣΗΣ ΕΙΚΟΝΑΣ ΔΗΜΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ ΑΜ (2049)
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 6η Φίλτρα.
Ψηφιακές Επικοινωνίες Ι Ενότητα 3: Αποδιαμόρφωση και Ανίχνευση Βασικής Ζώνης Επίκουρος Καθηγητής Βασίλης Στυλιανάκης Πολυτεχνική Σχολή Πανεπιστημίου Πατρών.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Μεταβατική απόκριση ενός συστήματος δεύτερης τάξης Σχήμα 5.7 σελίδα 370.
ΗΛΕΚΤΡΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΗΣ.
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Τμήμα Εφηρμοσμένης Πληροφορικής και Πολυμέσων Εργαστήριο Νευρωνικών Δικτύων Slide 1 ΨΗΦΙΑΚΑ ΦΙΛΤΡΑ Προδιαγραφές.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 3η Μετασχηματισμός Fourier.
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 4η Δειγματοληψία.
ΜΕΘΟΔΟΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
Προσαρμοστικοί Αλγόριθμοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων:
Ψηφιακή Επεξεργασία Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
Η Έννοια της τυχαίας Διαδικασίας
TMHMA MHΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
Βιομηχανικός έλεγχος στην εποχή των υπολογιστών
Δισδιάστατα Σήματα και Συστήματα #1
Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Αν. Καθηγητής Γεώργιος Ευθύμογλου
Στοίχιση & Αναγνώριση Προσώπων
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
Εισαγωγή στα Προσαρμοστικά Συστήματα
Προσαρμοστικοί Αλγόριθμοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων:
Μεταγράφημα παρουσίασης:

Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας

ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1/2) Αναίρεση υποβάθμισης που μπορεί να οφείλεται: Αναίρεση υποβάθμισης που μπορεί να οφείλεται: –Στο οπτικό σύστημα (θόλωμα λόγω κακής εστίασης, γεωμετρικές παραμορφώσεις...) –Σε ατέλειες στους αισθητήρες και τη διάταξή τους –Στην παρουσία θορύβων (λευκού, χρωματισμένου, προσθετικού, πολλαπλασιαστικού...) –Σε παράγοντες περιβάλλοντος κατά την λήψη –Στη σχετική κίνηση κάμερας – αντικειμένου –...

ΤΜΗΥΠ / ΕΕΣΤ3 Εισαγωγή (2/2) Η αποκατάσταση προσπαθεί από την g(x,y) να ανακτήσει την f(x,y) με εφαρμογή αντικειμενικών κριτηρίων Η αποκατάσταση προσπαθεί από την g(x,y) να ανακτήσει την f(x,y) με εφαρμογή αντικειμενικών κριτηρίων Απαιτείται η γνώση του είδους της υποβάθμισης ή τουλάχιστον κάποια καλή εκτίμηση Απαιτείται η γνώση του είδους της υποβάθμισης ή τουλάχιστον κάποια καλή εκτίμηση Θα εξετάσουμε τις εξής περιπτώσεις του προβλήματος: Θα εξετάσουμε τις εξής περιπτώσεις του προβλήματος: –Προσθήκη λευκού θορύβου –Υποβάθμιση λόγω συνέλιξης (PSF) –PSF + λευκός θόρυβος –Σχετική κίνηση

ΤΜΗΥΠ / ΕΕΣΤ4 Προσθήκη Θορύβου (1/5) Υποθέσεις: Υποθέσεις: –Ο θόρυβος είναι προσθετικός, δηλαδή –g(x,y)=f(x,y)+n(x,y) –Η f(x,y) είναι 2-D στοχαστική διαδικασία, ασθενώς στάσιμη (τουλάχιστον με τη χωρική έννοια) και με μέση τιμή μηδέν –Η n(x,y) είναι λευκός θόρυβος (τουλάχιστον χωρικά) με μέση τιμή μηδέν, ασυσχέτιστος με την f(x,y)

ΤΜΗΥΠ / ΕΕΣΤ5 Προσθήκη Θορύβου (2/5) Φιλτράρισμα Wiener Φιλτράρισμα Wiener – f '(x,y)=h w (x,y)**g(x,y) Μοντέλο επεξεργασίας Μοντέλο επεξεργασίας Ζητούμενο: Να βρεθεί ο γραμμικός εκτιμητής h w (x,y) ο οποίος με είσοδο την g(x,y) δίνει ως έξοδο την f '(x,y) με τρόπο ώστε f '(x,y)  f (x,y)

ΤΜΗΥΠ / ΕΕΣΤ6 Προσθήκη Θορύβου (3/5) Κριτήριο υπολογισμού h w (x,y) Κριτήριο υπολογισμού h w (x,y) Λύση (στο πεδίο συχνοτήτων) : Λύση (στο πεδίο συχνοτήτων) : Όπου: - P f (u,v) : Πυκνότητα φάσματος ισχύος της f(x,y) - P n (u,v) : Πυκνότητα φάσματος ισχύος της n(x,y)

ΤΜΗΥΠ / ΕΕΣΤ7 Προσθήκη Θορύβου (4/5) Αν ΝxΝ σήμα x, τότε P x (u,v)=|X(u,v)| 2 /N 2, όπου |Χ(·)| το μέτρο του DFT του Χ στο σημείο (u,v). Αν ΝxΝ σήμα x, τότε P x (u,v)=|X(u,v)| 2 /N 2, όπου |Χ(·)| το μέτρο του DFT του Χ στο σημείο (u,v). To P f υπολογίζεται αφαιρώντας από το P g το P n To P f υπολογίζεται αφαιρώντας από το P g το P n To P n υπολογίζεται από την μέση τιμή ενός παραθύρου που καλύπτει κάποιες από τις υψηλές συχνότητες της εικόνας g To P n υπολογίζεται από την μέση τιμή ενός παραθύρου που καλύπτει κάποιες από τις υψηλές συχνότητες της εικόνας g

ΤΜΗΥΠ / ΕΕΣΤ8 Προσθήκη Θορύβου (5/5) Εικόνα με λευκό θόρυβο Gauss και το αποτέλεσμα της επεξεργασίας (αν θεωρηθούν γνωστά τα απαιτούμενα φάσματα ισχύος)

ΤΜΗΥΠ / ΕΕΣΤ9 Υποβάθμιση λόγω συνέλιξης (1/2) Μοντέλο Μοντέλο –g(x,y)=f(x,y)**b(x,y), G(u,v)=F(u,v)B(u,v) –b(x,y): το σύστημα υποβάθμισης - θεωρείται γνωστό Φιλτράρισμα με αντίστροφο φίλτρο Φιλτράρισμα με αντίστροφο φίλτρο – H(u,v)=1/B(u,v) και άρα H(u,v)G(u,v)=F(u,v) –Αν υπάρχει θόρυβος τότε  H(u,v)G(u,v)=F(u,v)+Ν(u,v)/B(u,v)  Χρήση κατωφλίου

ΤΜΗΥΠ / ΕΕΣΤ10 Υποβάθμιση λόγω συνέλιξης (2/2) Αρχική εικόνα Αρχική εικόνα Εικόνα μετά από συνέλιξη και θόρυβο Εικόνα μετά από συνέλιξη και θόρυβο Αντίστροφο φίλτρο χωρίς κατώφλι Αντίστροφο φίλτρο χωρίς κατώφλι Αντίστροφο φίλτρο με κατώφλι Αντίστροφο φίλτρο με κατώφλι

ΤΜΗΥΠ / ΕΕΣΤ11 Υποβάθμιση λόγω συνέλιξης και θορύβου (1/3) Πιθανές προσεγγίσεις: Πιθανές προσεγγίσεις: Χρήση αντίστροφου φίλτρου με κατώφλι Χρήση αντίστροφου φίλτρου με κατώφλι Χρήση φίλτρου Wiener για την ελαχιστοποίηση του θορύβου και έπειτα αντίστροφου φίλτρου με κατώφλι για την αναίρεση της συνέλιξης Χρήση φίλτρου Wiener για την ελαχιστοποίηση του θορύβου και έπειτα αντίστροφου φίλτρου με κατώφλι για την αναίρεση της συνέλιξης Χρήση φίλτρου Wiener επί του συνόλου Χρήση φίλτρου Wiener επί του συνόλου –Το μοντέλο σε αυτή την περίπτωση είναι: g(x,y)=f(x,y)**b(x,y)+n(x,y)

ΤΜΗΥΠ / ΕΕΣΤ12 Υποβάθμιση λόγω συνέλιξης και θορύβου (2/3) Με χρήση του προηγούμενου μοντέλου και του σχετικού MMSE κριτηρίου προκύπτει ότι το φίλτρο Wiener δίνεται από την έκφραση: Με χρήση του προηγούμενου μοντέλου και του σχετικού MMSE κριτηρίου προκύπτει ότι το φίλτρο Wiener δίνεται από την έκφραση: Το παραπάνω φίλτρο Wiener είναι ισοδύναμο με τη διαδοχική εφαρμογή ενός φίλτρου Wiener για τον θόρυβο και ενός αντίστροφου φίλτρου για το σύστημα υποβάθμισης Το παραπάνω φίλτρο Wiener είναι ισοδύναμο με τη διαδοχική εφαρμογή ενός φίλτρου Wiener για τον θόρυβο και ενός αντίστροφου φίλτρου για το σύστημα υποβάθμισης

ΤΜΗΥΠ / ΕΕΣΤ13 Υποβάθμιση λόγω συνέλιξης και θορύβου (3/3) Αρχική εικόνα Αρχική εικόνα Εικόνα μετά από συνέλιξη και θόρυβο Εικόνα μετά από συνέλιξη και θόρυβο Αντίστροφο φίλτρο με κατώφλι Αντίστροφο φίλτρο με κατώφλι Wiener Wiener

ΤΜΗΥΠ / ΕΕΣΤ14 Προσαρμοστική επεξεργασία Επεξεργασία pixel-by-pixel με βάση τα τοπικά χαρακτηριστικά (μεγάλη πολυπλοκότητα) Επεξεργασία pixel-by-pixel με βάση τα τοπικά χαρακτηριστικά (μεγάλη πολυπλοκότητα) Επεξεργασία block-by-block Επεξεργασία block-by-block (blocking effect: αντιμετωπίζεται με επικαλυπτόμενα μπλοκ και κατάλληλη παραθύρωση ) (blocking effect: αντιμετωπίζεται με επικαλυπτόμενα μπλοκ και κατάλληλη παραθύρωση ) Προσαρμοστικό φίλτρο Wiener Προσαρμοστικό φίλτρο Wiener (αλγόριθμος του Lee) (αλγόριθμος του Lee)

ΤΜΗΥΠ / ΕΕΣΤ15 Προσαρμοστική επεξεργασία Wiener (1/2) Θεωρούμε μια υπο-περιοχή όπου η εικόνα είναι στάσιμη και μπορεί να γραφτεί ως Θεωρούμε μια υπο-περιοχή όπου η εικόνα είναι στάσιμη και μπορεί να γραφτεί ως f(x,y)=m f + σ f w(x,y) f(x,y)=m f + σ f w(x,y) όπου m f και σ f είναι η τοπική μέση τιμή και τυπική απόκλιση, αντίστοιχα, ενώ w(x,y) είναι λευκή διαδικασία με μέση τιμή μηδέν και διασπορά 1. όπου m f και σ f είναι η τοπική μέση τιμή και τυπική απόκλιση, αντίστοιχα, ενώ w(x,y) είναι λευκή διαδικασία με μέση τιμή μηδέν και διασπορά 1. Το φίλτρο Wiener που εφαρμόζεται στην g(x,y) (θυμίζουμε ότι g(x,y)= f(x,y)+n(x,y) ) είναι το Το φίλτρο Wiener που εφαρμόζεται στην g(x,y) (θυμίζουμε ότι g(x,y)= f(x,y)+n(x,y) ) είναι το

ΤΜΗΥΠ / ΕΕΣΤ16 Προσαρμοστική επεξεργασία Wiener (2/2) Η κρουστική απόκριση του φίλτρου Wiener είναι η Η κρουστική απόκριση του φίλτρου Wiener είναι η Η εικόνα εξόδου του φίλτρου Wiener, και θεωρώντας ότι τα m f και σ f είναι χωρικά μεταβαλλόμενα, δίνεται από την σχέση: Η εικόνα εξόδου του φίλτρου Wiener, και θεωρώντας ότι τα m f και σ f είναι χωρικά μεταβαλλόμενα, δίνεται από την σχέση:

ΤΜΗΥΠ / ΕΕΣΤ17 Υποβάθμιση λόγω κίνησης (1/4) Εξαιτίας του μη μηδενικού χρόνου απόκρισης των αισθητήρων η αποκτηθείσα ψηφιακή εικόνα παρουσιάζεται θολωμένη Εξαιτίας του μη μηδενικού χρόνου απόκρισης των αισθητήρων η αποκτηθείσα ψηφιακή εικόνα παρουσιάζεται θολωμένη Μοντέλο κίνησης – Υπέρθεση εικόνων που μετατοπίζονται Μοντέλο κίνησης – Υπέρθεση εικόνων που μετατοπίζονται - Τ : Η χρονική διάρκεια έκθεσης στο φως - x 0 (t), y 0 (t) : Η οριζόντια και κατακόρυφη μετατόπιση της f(x,y) στο χρόνο t σε σχέση με το σύστημα καταγραφής

ΤΜΗΥΠ / ΕΕΣΤ18 Υποβάθμιση λόγω κίνησης (2/4)

ΤΜΗΥΠ / ΕΕΣΤ19 Υποβάθμιση λόγω κίνησης (3/4) Το Η(·) υπολογίζεται εύκολα αρκεί να είναι γνωστές οι συναρτήσεις x 0 (t), y 0 (t) –Π.χ. αν y 0 (t)=0 και x 0 (t)=kt, τότε Η(Ω x,Ω y )=sinc(Ω x kΤ/2) Συνεπώς θεωρούμε ότι η υποβάθμιση εισάγεται μέσω συστήματος με απόκριση συχνότητας Η(·) Συνεπώς θεωρούμε ότι η υποβάθμιση εισάγεται μέσω συστήματος με απόκριση συχνότητας Η(·)

ΤΜΗΥΠ / ΕΕΣΤ20 Υποβάθμιση λόγω κίνησης (4/4) k=4, Τ=0.01sec