ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΟΥΡΩΝ MARKOV 30/05/2011

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Διαδικασίες Markov, Εκθετική Κατανομή, Κατανομή Poisson
Advertisements

Μεταγωγή (Switching) Λειτουργία: συνδέει εισόδους σε εξόδους, έτσι ώστε τα bits ή τα πακέτα που φτάνουν σε ένα σύνδεσμο, να φεύγουν από έναν άλλο επιθυμητό.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης
Δίκτυα Ουρών - Παραδείγματα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων-Θανάτων (Birth-Death), Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1 Β. Μάγκλαρης
Ανάλυση – Προσομοίωση Ουρών Markov
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Διαδικασίες Γεννήσεων – Θανάτων (Birth-Death Processes)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Εισαγωγή II ΣΥΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Κοινά χαρακτηριστικά (1) –Πελάτης (όχημα, πελάτης καταστήματος, τηλεφωνική κλήση, πακέτο δεδομένων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 18/04/13 Συστήματα Αναμονής: M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)
Moντέλα Καθυστέρησης και Ουρές
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κατανομή Poisson, Διαδικασίες Markov, Διαδικασίες Γεννήσεων-Θανάτων (Birth-Death) Β. Μάγκλαρης
Το Μ/Μ/1 Σύστημα Ουράς Μ (η διαδικασία αφίξεων είναι Poisson) /
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
Διαχείριση Δικτύων Ευφυή Δίκτυα Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων (NETMODE)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B) Β. Μάγκλαρης
1 Χαρακτηριστικά ενός Μ/Μ/1 συστήματος : Αφίξεις κατανεμημένες κατά Poisson Εκθετικά κατανεμημένοι χρόνοι εξυπηρέτησης Οι χρόνοι εξυπηρέτησης είναι αμοιβαία.
Slide 1 Δίκτυα Τηλεπικοινωνιών ENOTHTA 8 η ΔΙΑΚΙΝΗΣΗ ΤΗΛΕΦΩΝΙΚΩΝ ΚΛΗΣΕΩΝ (ΜΕΡΟΣ B’) 1. ΔΙΑΚΡΙΣΗ ΜΟΝΤΕΛΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ  Για την ταξινόμηση.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Παράδειγμα Βελτιστοποίησης Μέσου Μήκους Πακέτου 23/05/2011.
1 Έλεγχος ροής και συμφόρησης (flow and congestion control) flow control Ο όρος έλεγχος ροής (flow control) χρησιμοποιείται συχνά για να περιγράψει τους.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 16/05/13 Δίκτυα Ουρών. ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ ΕΝ ΣΕΙΡΑ Θεώρημα Burke: Η έξοδος πελατών από ουρά Μ/Μ/1 ακολουθεί κατανομή Poisson.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/04/13 Διαδικασίες Γεννήσεων-Θανάτων (Birth- Death), Εξισώσεις Ισορροπίας, Συστήματα Αναμονής Μ/Μ/1.
Μεταγωγή (Switching) Πως σχηματίζουμε διαδίκτυα. Περίληψη Μεταγωγή Κυκλωμάτων (Circuit switching) Μεταγωγή Πακέτων (Packet switching) Μεταγωγή Εικονικών.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Προσομοιώσεις Συστημάτων Αναμονής Markov (M/M/…)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 25/06/08 Ασκήσεις Επανάληψης.
Ασκήσεις - Παραδείγματα
Μεταγωγή (Switching) Πως σχηματίζουμε διαδίκτυα. Περίληψη Μεταγωγή Κυκλωμάτων (Circuit switching) Μεταγωγή Πακέτων (Packet switching) Μεταγωγή Εικονικών.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 25/04/13 Παραδείγματα χρήσης ουρών Μ/Μ/c/K.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
Χαρακτηριστικά ενός Μ/Μ/1 συστήματος :
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 20/06/08 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου
ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΟΣ MARKOV ΓΙΑ ΠΡΟΩΘΗΣΗ ΚΙΝΗΣΗΣ STREAMING (VIDEO) Άσκηση Προσομοίωσης 28/5/2012.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Επανάληψη (1): Παράμετροι αξιολόγησης συστημάτων αναμονής –Μέσος ρυθμός απωλειών λ – γ.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 01/06/05 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Δικτύων και Υπολογιστικών Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 2/03/05. ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Μοντέλα συμφόρησης (congestion) –Κυκλοφορία (οδική, σταθερής τροχιάς) –Ουρές σε καταστήματα, ταχυδρομεία,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Κοινά χαρακτηριστικά (1) –Πελάτης (όχημα, πελάτης καταστήματος, τηλεφωνική κλήση, πακέτο.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 27/05/10 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 04/07/07 Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Περιεχόμενα (1/3) 1.Εισαγωγή Περιεχόμενα Γενική Περιγραφή Συστημάτων Αναμονής Τεχνικές.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 20/06/07 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/04/11 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 11/06/08 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 27/06/07 Ουρές Markov Μ/Μ/Ν/Κ.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 28/05/08 Διαδικασίες Γεννήσεων Θανάτου Εξισώσεις Ισορροπίας.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 5/07/06 Παραδείγματα Ανάλυσης Ουρών Markov και Μοντελοποίησης Συστημάτων.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 12/07/06 Ανάλυση Ουρών Markov Μ/Μ/Ν/Κ Παραδείγματα Μοντελοποίησης και Αξιολόγησης Επίδοσης Υπολογιστικών και Τηλεπικοινωνιακών Συστημάτων.
6/26/2015HY220: Ιάκωβος Μαυροειδής1 HY220 Asynchronous Circuits.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 06/05/10 Ανάλυση Ουρών Markov.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εργοδικές Πιθανότητες, Ισορροπία Μεταβάσεων - Ουρές Μ/Μ/1 Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κατανομή Poisson, Διαδικασίες Γεννήσεων- Θανάτων (Birth-Death Processes) Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα Ανοικτών Δικτύων Ουρών Κλειστά Δίκτυα Ουρών Β. Μάγκλαρης Σ. Παπαβασιλείου.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές Markov (birth-death processes) Ουρές Μ/Μ/N/K - Erlang C Ουρές M/M/c/c - Erlang B Παραδείγματα Εφαρμογής Βασίλης.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα Εφαρμογής Άσκηση Προσομοίωσης Βασίλης Μάγκλαρης 6/4/2016.
1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon – Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης 11/5/2016.
Θεωρία Γραμμών Αναμονής ή ΟΥΡΕΣ (QUEUE)
Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών
Διαχείριση Δικτύων - Ευφυή Δίκτυα, 9ο Εξάμηνο,
Μεταγωγή (Switching) Λειτουργία: συνδέει εισόδους σε εξόδους, έτσι ώστε τα bits ή τα πακέτα που φτάνουν σε ένα σύνδεσμο, να φεύγουν από έναν άλλο επιθυμητό.
Βασίλης Μάγκλαρης 13/4/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανοικτά Δίκτυα Ουρών Markov Θεωρήματα Burke & Jackson Βασίλης Μάγκλαρης.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών
Βασίλης Μάγκλαρης 16/3/2016 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ιδιότητες Κατανομής Poisson & Εκθετικής Κατανομής Διαδικασίες Γεννήσεων.
Χαρακτηριστικά και Αξιολόγηση Δικτύου για εφαρμογές Πολυμέσων
Χαρακτηριστικά και Αξιολόγηση Δικτύου για εφαρμογές Πολυμέσων
Παράρτημα: Υπηρεσίες Δικτύων
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
Μεταγράφημα παρουσίασης:

ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΟΥΡΩΝ MARKOV 30/05/2011 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ ΚΛΕΙΣΤΑ ΔΙΚΤΥΑ ΟΥΡΩΝ MARKOV 30/05/2011

ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΔΥΟ ΑΝΕΞΑΡΤΗΤΩΝ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ – ΠΛΗΘΥΣΜΟΣ Ν = 3 μ1 P(1,2) = μ2 P(0,3) μ1 P(2,1) = μ2 P(1,2) μ1 P(3,0) = μ2 P(2,1) P(0,3) + P(1,2) + P(2,1) + P(3,0) = 1 γ = μ2 [1- P(3,0)]

ΚΛEΙΣΤΑ ΔΙΚΤΥΑ ΟΥΡΩΝ Θεώρημα Gordon-Newel Παρόμοιες παραδοχές με Θεώρημα Jackson για ανοικτά δίκτυα Markov Ανεξάρτητοι εκθετικοί εξυπηρετητές i = 1, 2, …, M με ρυθμό μi Παραδοχή ανεξαρτησίας Kleinrock Τυχαία Δρομολόγηση r (i,j) = Probability (i  j) Ονομάζουμε Xi παράμετρο ανάλογη του βαθμού χρησιμοποίησης της ουράς i : Xi = C λi /μi Λύνουμε το γραμμικό σύστημα που εξισώνει εισόδους – εξόδους ρυθμαποδόσεων λi σε κάθε ουρά i Για κάθε ουρά i που τροφοδοτείται από ουρές j : λi = Σ r(j,i) λj λ1 = λ2 στο παράδειγμα ή Χ1 μ1 = Χ2 μ2 H εργοδική πιθανότητα της κατάστασης n = (n1, n2, …, nM) δίνεται με μορφή γινομένου: Η σταθερά G(N) (Partition Function) υπολογίζεται με την κανονικοποίηση: Άθροισμα των εργοδικών πιθανοτήτων P(n) όλων των καταστάσεων n ίσο με μονάδα: Hard problem, αναδρομικός αλγόριθμος Buzen

ΠΑΡΑΔΕΙΓΜΑ Χ1 μ1 = Χ2 μ2 Χ1 = 1, Χ2 = μ1 /μ2 = α P(0,3) = α3/G(3) E(T1) = E (n1) / λ1 = E (n1)/γ Ακολουθεί παράδειγμα εφαρμογής κλειστού δικτύου ουρών για μοντέλο ελέγχου ροής (Flow Control) σε δίκτυα μεταγωγής πακέτου (Internet) από το βιβλίο του Mischa Schwartz “Telecommunications Networks: Protocols, Modeling & Analysis,” Addison Wesley,1988

Sliding Window Flow Control Model Virtual Circuit Virtual Circuit (VC) covering M sore-and-forward nodes from source to destination Assumptions: Each packet is individually acked Packets are assumed blocked if N packets are outstanding along the VC (sliding window N) packet traversing cascade of queues has its packet length selected randomly and independently (i.e. exponential distribution) If l (representing input rate of VC) increases then delay and congestion increases (without control) With control, congestion is limited (as no more than N packets can be in transit) N ↓ Delay ↓ Throughput ↓ N ↑ Delay ↑ Throughput ↑ Dependence on M (Throughput ↑ as M ↑ but Delay ↑) End to end statistics of the VC