1 Αλγοριθμική Θεωρία Γραφημάτων Ακαδ. ‘Ετος 2012-13 Τμήμα Πληροφορικής - Πανεπιστήμιο Ιωαννίνων Διάλεξη 1.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ancient Greek for Everyone: A New Digital Resource for Beginning Greek Unit 4: Conjunctions 2013 edition Wilfred E. Major
Advertisements

Προβολή SPmC TURBOHALER ΑΣθΜΑ ΧΑΠ Subordinated pages Animation step Structure of the pages is clear No animation Simple animation.
SCHOOL YEAR Ms Kefallinou. Language A: Language and Literature is directed towards developing and understanding the constructed nature of meanings.
Πρωτόκολλα για Ασύρματα Δίκτυα και ΑΤΜ. Σιγανός Γεώργιος Multiplexing voice and video packet traffic Εργαστήριο Τηλεπικοινωνιών Πολυτεχνείο Κρήτης “Traffic.
Factoring and Testing Primes in Small Space Viliam Geffert P.J.Šafárik University, Košice, Slovakia Dana Pardubská Comenius University, Bratislava, Slovakia.
CCS SysTheo The Church – The Parts. The Trinity and the Church The Roles Father – the Maker, Giver and Keeper John 17 John 15:1-17 Son – the Head Eph.
Ancient Greek for Everyone: Unit 3: Greek Nouns supplement: Tips on Translating Greek into English GREK 1001 Fall 2013 M-Th 9:30-10:20 Coates 236 Wilfred.
Business Process Management and Knowledge Toolkit
Some information about our place. Greece is a small country on the south of Europe. The peninsula, where Greece is located, is called Balkan.
ΠΛΑΚΑ Η παλαιότερη γειτονιά της Αθήνας διατηρεί τα ίχνη της μακραίωνης ιστορίας της.
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Distributed Database Systems.
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Τεχνολογία ΛογισμικούSlide 1 Έλεγχος Καταψύκτη (Ada) Τεχνολογία ΛογισμικούSlide 39 with Pump, Temperature_dial, Sensor, Globals, Alarm; use Globals ; procedure.
Ανάκτηση Πληροφορίας Αποτίμηση Αποτελεσματικότητας.
© GfK 2012 | Title of presentation | DD. Month
-17 Προσδοκίες οικονομικής ανάπτυξης στην Ευρώπη Σεπτέμβριος 2013 Δείκτης > +20 Δείκτης 0 a +20 Δείκτης 0 a -20 Δείκτης < -20 Σύνολο στην Ευρωπαϊκή Ένωση:
+21 Προσδοκίες οικονομικής ανάπτυξης στην Ευρώπη Δεκέμβριος 2013 Δείκτης > +20 Δείκτης 0 να +20 Δείκτης 0 να -20 Δείκτης < -20 Σύνολο στην Ευρωπαϊκή Ένωση:
Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Data Mining.
Προγραμματισμός ΙΙ Διάλεξη #7: Περισσότερες Δομές Ελέγχου Δρ. Νικ. Λιόλιος.
Αποκεντρωμένη Διοίκηση Μακεδονίας Θράκης ∆ιαχείριση έργων επίβλεψης µε σύγχρονα µέσα και επικοινωνία C2G, B2G, G2G Γενική Δ/νση Εσωτερικής Λειτουργίας.
Προγραμματισμός ΙΙ Διάλεξη #6: Απλές Δομές Ελέγχου Δρ. Νικ. Λιόλιος.
1 Α. Βαφειάδης Αναβάθμισης Προγράμματος Σπουδών Τμήματος Πληροφορικής Τ.Ε.Ι Θεσσαλονίκης Μάθημα Προηγμένες Αρχιτεκτονικές Υπολογιστών Κεφαλαίο Τρίτο Συστήματα.
1 Please include the following information on this slide: Παρακαλώ, συμπεριλάβετε τις παρακάτω πληροφoρίες στη διαφάνεια: Name Giannakodimou Aliki Kourkouta.
Developing Human Values Through the Cross-curricular Approach.
Δομές Δεδομένων 1 Στοίβα. Δομές Δεδομένων 2 Στοίβα (stack)  Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή – πρώτη εξαγωγή)  Περιορισμένος.
MARIE CURIE  Project about Project  Πειραματικό Λύκειο Πανεπιστημίου Μακεδονίας  Team 3 Ξενίδης Γιώργος Βαρελτζίδου Μαρίνα Γαβριηλίδου Ελένη.
6 Η ΠΑΡΟΥΣΙΑΣΗ: ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΑΣ, ΜΕΣΩΝ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΦΗΜΙΣΗ.
Προγραμματισμός ΙΙ Διάλεξη #5: Εντολές Ανάθεσης Εντολές Συνθήκης Δρ. Νικ. Λιόλιος.
1 Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πανεπιστήμιο Πατρών ΟΝΤΟΚΕΝΤΡΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΙΙ (C++) Κληρονομικότητα.
“ Ἡ ἀ γάπη ἀ νυπόκριτος. ἀ ποστυγο ῦ ντες τ ὸ πονηρόν, κολλώμενοι τ ῷ ἀ γαθ ῷ, τ ῇ φιλαδελφί ᾳ ε ἰ ς ἀ λλήλους φιλόστοργοι, τ ῇ τιμ ῇ ἀ λλήλους προηγούμενοι.
Το Πρόβλημα Routing and Path Coloring και οι εφαρμογές του σε πλήρως οπτικά δίκτυα Ευχαριστίες: οι διαφάνειες αυτές βασίστηκαν εν μέρει στην παρουσίαση.
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 8 Τ ΕΛΕΙΑ Γ ΡΑΦΗΜΑΤΑ Σταύρος Δ. Νικολόπουλος 1.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
Προσομοίωση Δικτύων 3η Άσκηση Δημιουργία, διαμόρφωση μελέτη σύνθετων τοπολογιών.
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
Ψηφιακά Παιχνίδια και μάθηση Δρ. Νικολέτα Γιαννούτσου Εργαστήριο Εκπαιδευτικής Τεχνολογίας.
Διασύνδεση LAN Γιατί όχι μόνο ένα μεγάλο LAN
JSIS E 111: Elementary Modern Greek
Matrix Analytic Techniques
Αλγόριθμοι Ταξινόμησης – Μέρος 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ1 [kPa] for CD test at failure
Financial Market Theory
Find: Force on culvert in [lb/ft]
Deriving the equations of
Find: ρc [in] from load (4 layers)
CPSC-608 Database Systems
Erasmus + An experience with and for refugees Fay Pliagou.
Research Methodology Journal Club Presented by Ali A Haghdoost
Cipher Feedback Mode Network Security.
Baggy Bounds checking by Akritidis, Costa, Castro, and Hand
Using a Punnett Square.
How to do a Dihybrid Cross using a Punnett Square
Ellen Geer C Garrision Thursday 2-3:30
I have to take the MAP again?
Kanaka Creek School Teams Session January 30, 2018
April News from Mrs. Barham
Entry 27 – Starter Copy and simplify
Complements White Box Testing Finds a different class of errors
Constructing a Triangle
Μεταγράφημα παρουσίασης:

1 Αλγοριθμική Θεωρία Γραφημάτων Ακαδ. ‘Ετος Τμήμα Πληροφορικής - Πανεπιστήμιο Ιωαννίνων Διάλεξη 1

2 Εισαγωγή Βασικοί Αλγόριθμοι Γραφημάτων Πολυπλοκότητα χώρου και χρόνου: Ο και Ω Τέλεια Γραφήματα Κλάσεις Ιδιότητες Προβλήματα Τεχνικές Διάσπασης (modular decomposition, …) Αλγόριθμοι Προβλημάτων Αναγνώρισης και Βελτιστοποίησης

3 Αλγόριθμοι Θεωρίας Γραφημάτων Πολυωνυμικοί Αλγόριθμοι… (Γραμμικοί) Προβλήματα: NP-Πλήρη Επιλογές Προσέγγιση Λύσης Περιορισμοί Ιδιοτήτων Τέλεια Γραφήματα, …

4 Κλάσεις Τέλειων Γραφημάτων

5

Graph Theoretic Foundations (0) 6 Graph G = (V, E) B

Graph Theoretic Foundations (1) 7 G = (V, E) and G′ = (V′, E′) are isomorphic, denoted G G′, if  a bijection f: V  V′: (x, y)  E  (f(x), f(y))  E′  x, y  V , 2, 3, 4, 5, 6 1, 5, 3, 4, 2, 6 (2,6)  E  (5, 6)  E ’

Let A  V. We define the subgraph induced by A to be G A = (A, E A ), where E A = {(x, y)  E A | x  A and y  A} Not every subgraph of G is an induced subgraph of G 8 Graph Theoretic Foundations (2)

Let F be a family of nonempty sets. The intersection graph of F is obtained be representing each set in F by a vertex: x  y  S X ∩ S Y ≠  9 Intersection Graphs

The intersection graph of a family of intervals on a linearly ordered set (like the real line) is called an interval graph 2 I 1 I 3 I I 2 I 4 I I 7 5 unit internal graph proper internal graph - no internal property contains another 10 7 Intersection Graphs (Interval)

Consider the following relaxation: if we join the two ends of our line, the intervals will become arcs on the circle. Allowing arcs to slip over, we obtain a class of intersection graphs called the circular-arc graphs. 11 Intersection Graphs (Circular-arc)

Circular-arc graphs properly contain the internal graphs. proper circular - arc graphs Intersection Graphs (Circular-arc)

A permutation diagram consists of n points on each of two parallel lines and n straight line segments matching the points. Π= [ 4,1, 3, 2 ] G[ Π ] 13 Intersection Graphs (Permutation)

14 Intersection Graphs (Permutation)

Intersecting chords of a circle Propositinon 1.1. An induced subgraph of an interval graph is an interval graph. Proof. If {I V } v  V is an interval representation of a graph G = (V, E). Then {I V } v  X is an interval representation of the induced subgraph G X = (X, E X ). 15 Intersection Graphs (Chords-of-circle)

Triangulated Graph Property Every simple cycle of length l > 3 possesses a chord. Triangulated graphs (or chord graphs) 16 Triangulated Property

Transitive Orientation Property Each edge can be assigned a one-way direction in such a way that the resulting oriented graph (V, F): ab  F and bc  F  ac  F (  a, b, c  V) Graphs which satisfy the transitive orientation property are called comparability graph. 17 Transitive Orientation Property

Proposition 1.2. An interval graph satisfies the triangulated graph property. Proof. Suppose G contains a cordless cycle [v 0,v 1,….,v l-1,v 0 ] with l > 3. Let I K  v K. For i =1, 2,…, l-1, choose a point P i  I i-1 ∩ I i. Since I i-1 and I i+1 do not overlap, the points P i constitute a strictly increasing or decreasing sequence. Therefore, it is impossible for the intervals I 0 and I l-1 to intersect, contradicting the criterion that v 0 v l-1 is an edge of G. 18 Intersection Graph Properties (1)

Proposition 1.3. The complement of an internal graph satisfies the transitive orientation property. Proof. Let {I v } v  V be the interval representation for G = (V, E). Define an orientation F of Ğ = (V, Ē) as follows: xy  F  I X < I Y (  xy  Ē). 19 Intersection Graph Properties (2) Here, I X < I Y means that I X lies entirely to the left of I Y. Clearly the top is satisfied, since I X < I Y < I Z  I X < I Z. Thus F is a transitive orientation of Ğ.

Theorem 1.4. An indirected graph G is an interval graph iff G is triangulated graph and its complement Ğ is a comparability graph. Each of the graphs can be colored using 3 colors and each contains a triangle. Therefore, χ = ω 20 Intersection Graph Properties (3)

Clique number ω(G) the number of vertices in a maximum clique of G 21 Stability number α(G) the number of vertices in a stable set of max cardinality  Max κλίκα του G ω(G) = 4 Max stable set of G α(G) = 3 a b c d f e b c d e a c f Graph Theoretic Foundations (3)

A clique cover of size k is a partition V = C 1 + C 2 +…+ C k such that C i is a clique. A proper coloring of size c (proper c-coloring) is a partition V = X 1 + X 2 +…+ X c such that X i is a stable set. 22 Graph Theoretic Foundations (4)

Clique cover number κ(G) the size of the smallest possible clique cover of G Chromatic number χ(G) the smallest possible c for which there exists a proper c-coloring of G. χ(G) = 2 κ(G) = 3 clique cover V={2,5}+{3,4}+{1} c-coloring V={1,3,5}+{2,4} κ(G)=3 χ(G)=2 23 Graph Theoretic Foundations (5)

For any graph G: ω(G) ≤ χ(G) α(G) ≤ κ(G) Obriasly : α(G) = ω(Ğ) and κ(G) = χ(Ğ) 24 Graph Theoretic Foundations (6)

Let G = (V, E) be an undirected graph : (P 1 ) ω(G A ) = χ(G A )  A  V (P 2 ) α(G A ) = κ(G A )  A  V G is called Perfect 25 Perfect Graphs - Definition

χ-Perfect property For each induced subgraph G A of G χ(G A ) = ω(G A ) α-Perfect property For each induced subgraph G A of G α(G A ) = κ(G A ) 26 Perfect Graphs - Properties

The Design of Efficient Algorithms Computability – computational complexity Computability addresses itself mostly to questions of existence: Is there an algorithm which solves problem Π? An algorithm for Π is a step-by-step procedure which when applied to any instance of Π produces a solution. 27

Rewrite an optimization problem as a decision problem 28 Graph Coloring Instance: A graph G Instance: G and k  Z + Question: What is the smallest number of colors needed for a proper coloring of G? Question: Does there exist a proper k coloring of G? The Design of Efficient Algorithms

Determining the complexity of a problem Π requires a two-sided attack: 1. The upper bound – the minimum complexity of all known algorithms solving Π. 2. The lower bound – the largest function f for which it has been proved (mathematically) that all possible algorithms solving Π are required to have complexity at least as high as f.  Gap between (1) - (2) => research 29 The Design of Efficient Algorithms

Example: matrix multiplication - Strassen [1969] - Pan [1979] The lower bound known to date for this problem is only O(n 2 ) [ Aho, Hoproft, Ullman, 1994, pp 438] 30 O(n 2.81 ) O(n 2.78 ) O(n ) n >> The Design of Efficient Algorithms

The biggest open question involving the gap between upper and lower complexity bounds involves the so called NP-complet problems. Π  NP-complete  only exponential-time algorithms are known, yet the best lower bounds proven so far are polynomial functions. 31 The Design of Efficient Algorithms

Π  P if there exists a “deterministic” polynomial-time algorithm which solves Π A nondeterministic algorithm is one for which a state may determine many next states and which follows up on each of the next states simultaneously. Π  NP if there exists a “nonderminitic” polynonial-time algorithm which solves Π. 32 The Design of Efficient Algorithms

Clearly, P  NP Open question is whether the containment of P in NP is proper – is P ≠ NP ? 33 The Design of Efficient Algorithms

Π  NP – complete if Π  NP and Π  NP-hard Repeat the following instructions: (1) Find a candidate Π which might be NP-complete (2) Select Π΄ from the bag of NP-complete problems (3) Show that Π  NP and Π΄≤ Π (4) Add Π to the bag 34 The Design of Efficient Algorithms

Theorem (Poljak (1974)): STABLE SET ≤ STABLE SET ON TRIANGLE-FREE GRAPHS Proof Let G be a graph on n vertices and m edges. We construct from G a triangle-tree graph H with the properly that : Knowing α(H) will immediately give us α(G) 35 The Design of Efficient Algorithms G

Subdivide each edge of G into a path of length 3 H is triangle-free with n+2m vertices, and 3m edges Also, H can be constructed from G in Ο(n+m) Finally, since α(H) = α(G) + m, a deterministic polynomial time algorithm which solves for α(H) yields a solution to α(G). 36 The Design of Efficient Algorithms H

 Since it is well known that STABLE SET is NP-complete, we obtain the following lesser known result. Corollary: STABLE SET ON TRIANGLE-FREE GRAPHS is NP-complete.  Theorem (Poljak(1974)): STABLE SET ≤ GRAPH COLORING 37 The Design of Efficient Algorithms

Some NP-complete Problems Graph coloring instance: G question: What is χ(G)? Clique instance : G question: What is ω(G)? Perfect graphs  Optimization Problems? 38  Stable set instance : G question: What is α(G)?  Clique cover instance : G question: What is κ(G)? The Design of Efficient Algorithms

Βασικοί Αλγόριθμοι Γραφημάτων Πολυπλοκότητα χώρου και χρόνου: Ο και Ω Τέλεια Γραφήματα Κλάσεις Ιδιότητες Προβλήματα Τεχνικές Διάσπασης (modular decomposition, …) Αλγόριθμοι Προβλημάτων Αναγνώρισης και Βελτιστοποίησης 39 Coloring Max Clique Max Stable Set Clique Cover Matching Hamiltonian Path Hamiltonian Cycle … Perfect Graphs – Optimization Problems Triangulated Comparability Interval Permutation Split Cographs Threshold graphs QT graphs …