Διάλεξη 16: Πρόβλημα Συμφωνίας ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Προσομοίωση Απλού Μοντέλου Markov σε
Advertisements

Κατηγορηματικός Λογισμός
ΓΡΑΜΜΑΤΙΚΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ I
Εφαρμογές Υπολογιστών Ά Λυκείου Κεφ. 4 Λογισμικό Συστήματος
Επιμέλεια: Τίκβα Χριστίνα
1 Α. Βαφειάδης Αναβάθμισης Προγράμματος Σπουδών Τμήματος Πληροφορικής Τ.Ε.Ι Θεσσαλονίκης Μάθημα Προηγμένες Αρχιτεκτονικές Υπολογιστών Κεφαλαίο Πρώτο Αρχιτεκτονική.
Πιθανοκρατικοί Αλγόριθμοι
ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ ΤΜΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι
Εισαγωγή στους Η/Υ Πίνακες.
ΕΠΛ231 – Δομές Δεδομένων και Αλγόριθμοι
Διακριτά Μαθηματικά ΙI Δέντρα
Πολυπλοκότητα Παράμετροι της αποδοτικότητας ενός αλγόριθμου:
TEMPLATES STANDARD TEMPLATE LIBRARY ΟΝΤΟΚΕΝΤΡΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ C Evangelos Theodoridis.
Αλγόριθμος Tonelli-Shanks
Αλγόριθμοι Ταξινόμησης
24/11/2003Message Passing Interface (MPI)1 Αθήνα, Νοέμβριος 2003 Συστήματα Παράλληλης Επεξεργασίας Εργαστήριο Υπολογιστικών Συστημάτων.
22/11/2004Message Passing Interface (MPI)1 Αθήνα, Νοέμβριος 2004 Συστήματα Παράλληλης Επεξεργασίας Εργαστήριο Υπολογιστικών Συστημάτων.
ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ Β. Κώστογλου – Τμήμα Πληροφορικής ΑΤΕΙ-Θ
Κώστας Διαμαντάρας Τμήμα Πληροφορικής ΤΕΙ Θεσσαλονίκης 2011 Συστολικοί επεξεργαστές.
Εισαγωγικές Έννοιες Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Συνέπεια Τόξου (Arc Consistency)
Αναγνώριση Προτύπων.
Γραφήματα & Επίπεδα Γραφήματα
Κοντινότεροι Κοινοί Πρόγονοι α βγ θ δεζ η π ν ι κλμ ρσ τ κκπ(λ,ι)=α, κκπ(τ,σ)=ν, κκπ(λ,π)=η κκπ(π,σ)=γ, κκπ(ξ,ο)=κ ξο κκπ(ι,ξ)=β, κκπ(τ,θ)=θ, κκπ(ο,μ)=α.
Προσεγγιστικοί Αλγόριθμοι
Τυχαιοκρατικοί Αλγόριθμοι TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA Πιθανότητες και Αλγόριθμοι Ανάλυση μέσης.
ΒΡΟΧΟΙ ΜΑΘΗΜΑ 5. ΒΡΟΧΟΙΒΡΟΧΟΙ Ο Βρόχος (loop) αποτελείται από προτάσεις επανάληψης. Οι προτάσεις επανάληψης είναι οι προτάσεις που επαναλαμβάνουν ένα.
1 Χαρακτηριστικά ενός Μ/Μ/1 συστήματος : Αφίξεις κατανεμημένες κατά Poisson Εκθετικά κατανεμημένοι χρόνοι εξυπηρέτησης Οι χρόνοι εξυπηρέτησης είναι αμοιβαία.
Ανάλυση Πολλαπλής Παλινδρόμησης
ΣΥΣΤΗΜΑΤΑ ΣΥΛΛΟΓΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΜΕΤΡΗΣΕΩΝ
Ανάλυση Παλινδρόμησης με Δεδομένα Χρονολογικών Σειρών
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι12-1 Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ο αλγόριθμος του Prim και ο αλγόριθμος του Kruskal.
Σχεδιαση Αλγοριθμων - Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο1 Άπληστοι αλγόριθμοι βελτιστοποίησης Προβλήματα βελτιστοποίησης λύνονται με μια σειρά επιλογών.
Message Passing Interface (MPI) Συστήματα Παράλληλης Επεξεργασίας Εργαστήριο Υπολογιστικών Συστημάτων Αθήνα, Δεκέμβριος 2002.
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 2: ΘΕΜΑΤΑ ΘΕΩΡΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Η/Υ
Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2013 Διδάσκων: Δημήτριος Ι. Φωτιάδης Υπολογιστική Μοντελοποίηση στη Βιοϊατρική Τεχνολογία.
ΧΡΗΜΑΤΟΔΟΤΗΣΗ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΣΤΗ ΓΕΩΡΓΙΑ
Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης
2-1 Ανάλυση Αλγορίθμων Αλγόριθμος Πεπερασμένο σύνολο εντολών που, όταν εκτελεστούν, επιτυγχάνουν κάποιο επιθυμητό αποτέλεσμα –Δεδομένα εισόδου και εξόδου.
Μηχανές Turing και Υπολογισιμότητα
Μερικές Διαφορικές Εξισώσεις ΙΙ
Αλγόριθμοι Ταξινόμησης
Ειδικά Θέματα Αλγορίθμων και Δομών Δεδομένων
Ο αλγόριθμος Bellman-Ford (επανεξετάζεται)
Διαφάνειες παρουσίασης Πίνακες (συνέχεια) Αριθμητικοί υπολογισμοί Αναδρομή.
Διδακτική της Πληροφορικής ΗΥ302 Εργασία :Παρουσίαση σχολικού βιβλίου Γ’ Λυκείου Τεχνολογικής Κατεύθυνσης «Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον»
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών – Τμήμα Πληροφορικής και Τηλεπικοινωνιών 1 Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Προπτυχιακό.
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Τμ.
Ελάχιστο Συνδετικό Δέντρο
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 2: ΘΕΜΑΤΑ ΘΕΩΡΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Η/Υ
Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - 4ο εξάμηνο1 Ανάλυση Αλγορίθμων b Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα b Προσεγγίσεις:
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι
Μέγιστη ροή TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA A A Συνάρτηση χωρητικότητας Κατευθυνόμενο γράφημα.
Ασυμπτωτικός Συμβολισμός
ΕΠΛ 231 – Δομές Δεδομένων και Αλγόριθμοι13-1 Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ο αλγόριθμος Dijkstra για εύρεση βραχυτέρων μονοπατιών.
Δομές Δεδομένων 1 Θέματα Απόδοσης. Δομές Δεδομένων 2 Οργανώνοντας τα Δεδομένα  Η επιλογή της δομής δεδομένων και του αλγορίθμου επηρεάζουν το χρόνο εκτέλεσης.
Χρονική Πολυπλοκότητα
1 Αδιέξοδα Μοντέλο συστήματος Χαρακτηρισμός αδιεξόδου Μέθοδοι διαχείρισης αδιεξόδων Πρόληψη Αποφυγή Ανίχνευση.
Λήψη σύνθετων αποφάσεων. Ακολουθιακά προβλήματα αποφάσεων Η χρησιμότητα του αποτελέσματος κάθε ενέργειας, που μπορεί να επιλέξει σε μια χρονική στιγμή.
Εκλογή Αρχηγού Ειδικά Θέματα Κατανεμημένων Συστημάτων.
Internet Control Message Protocol (ICMP)
Κατανεμημένα Συστήματα
Λήμμα άντλησης Πως αποφασίζουμε αποδεικνύουμε ότι μία γλώσσα δεν είναι κανονική; Δυσκολότερο από την απόδειξη ότι μια γλώσσα είναι κανονική. Γενικότερο.
ΑΚΟΛΟΥΘΙΑΚΑ ΣΤΟΙΧΕΙΑ.
Αµοιβαίος αποκλεισµός
Μέγιστη ροή Κατευθυνόμενο γράφημα 12 Συνάρτηση χωρητικότητας
Ψηφιακός Έλεγχος διάλεξη Παρατηρητές Ψηφιακός Έλεγχος.
Το μοντέλο πελάτη - εξυπηρετητή
Μεταγράφημα παρουσίασης:

Διάλεξη 16: Πρόβλημα Συμφωνίας ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Τι θα δούμε σήμερα Ορισμός του προβλήματος Συμφωνίας Αλγόριθμος Συμφωνίας με Σφάλματα Κατάρρευσης 1 ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι

Πρόβλημα Συμφωνίας Κάθε επεξεργαστής έχει μια είσοδο Ένας αλγόριθμος επιλύει το πρόβλημα της Συμφωνίας αν μπορεί να εγγυηθεί τις πιο κάτω συνθήκες –Συνθήκη Τερματισμού: Κάθε μη εσφαλμένος επεξεργαστής πρέπει να αποφασίσει μια τιμή Η απόφαση είναι μη αντιστρέψιμη –Συνθήκη Συμφωνίας: Όλοι οι μη εσφαλμένοι επεξεργαστές αποφασίζουν την ίδια τιμή –Συνθήκη Εγκυρότητας: Η κοινή απόφαση πρέπει να αποτελούσε τη είσοδο κάποιου επεξεργαστή. Αν όλες οι είσοδοι είναι οι ίδιες, τότε κάθε μη εσφαλμένος επεξεργαστής πρέπει να αποφασίζει την κοινή είσοδο. ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 2

Παραδείγματα Συμφωνίας Δυαδικές είσοδοι: –Διάνυσμα εισόδου 1,1,1,1,1 Η απόφαση πρέπει να είναι 1 –Διάνυσμα εισόδου 0,0,0,0,0 Η απόφαση πρέπει να είναι 0 –Διάνυσμα εισόδου 1,0,0,1,0 Η απόφαση μπορεί να είναι είτε 0 ή 1 Είσοδοι Πολλαπλών τιμών: –Διάνυσμα εισόδου 1,2,3,2,1 Η απόφαση μπορεί να είναι είτε 1 ή 2 ή 3 ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 3

Ανασκόπηση Αποτελεσμάτων Σύγχρονο Μοντέλο Το πολύ f επεξεργαστές μπορούν να είναι εσφαλμένοι Στενά κάτω φράγματα για το μοντέλο ανταλλαγής μηνυμάτων ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 4 Σφάλματα Κατάρρευσης Βυζαντινά Σφάλματα Αριθμός γύρων f + 1 Ολικός αριθμός επεξεργαστών f + 13f + 1 Μέγεθος μηνύματων Πολυωνυμικό

Ανασκόπηση Αποτελεσμάτων Αδύνατη η επίλυση Συμφωνίας στο ασύγχρονο μοντέλο Ακόμα και στην παρουσία μόνο ενός σφάλματος κατάρρευσης Ισχύει για το μοντέλο ανταλλαγής μηνυμάτων και για το μοντέλο κοινόχρηστης μνήμης. ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 5

Μοντελοποίηση Σφαλμάτων Κατάρρευσης Αλλάζουμε τον ορισμό μιας νόμιμης εκτέλεσης χωρίς σφάλματα για να επιτρέπει σφάλματα κατάρρευσης Όλοι εκτός από το πολύ f επεξεργαστές (οι εσφαλμένοι) εκτελούν άπειρο αριθμό βημάτων. –Σύγχρονο μοντέλο: όταν ένας επεξεργαστής καταρρεύσει σε ένα γύρο δεν εκτελεί άλλα βήματα. Στο τελευταίο του βήμα ένας επεξεργαστής μπορεί να στείλει μηνύματα σε ένα τυχαίο υποσύνολο από επεξεργαστές προτού καταρρεύσει. ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 6

Αλγόριθμος Συμφωνίας με Σφάλματα Κατάρρευσης Code for each processor: v := my input at each round 1 through f+1: if I have not yet sent v then send v to all wait to receive messages for this round v := minimum among all received values and current value of v if this is round f+1 then decide on v ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 7

Εκτέλεση Αλγορίθμου round 1: –send my input –receive round 1 msgs –compute value for v round 2: –send v (if this is a new value) –receive round 2 msgs –compute value for v … round f + 1: –send v (if this is a new value) –receive round f + 1 msgs –compute value for v –decide v ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 8

Ορθότητα Αλγορίθμου Συνθήκη Τερματισμού (Ζωτικότητα): Από τον κώδικα τελειώνουμε στον γύρο f+1. Συνθήκη Εγκυρότητας (Ασφάλεια 1): Ισχύει από την στιγμή που οι επεξεργαστές δεν δημιουργούν τυχαίες τιμές: αν όλες οι είσοδοι είναι οι ίδιες τότε αυτή είναι η μόνη τιμή που ανταλλάσσεται στο σύστημα. ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 9

Ορθότητα Αλγορίθμου Συνθήκη Συμφωνίας (Ασφάλεια 2): Υποθέτουμε με αντίφαση ότι ο p j αποφασίζει μια πιο μικρή τιμή, x, από τον p i Αυτό μπορεί να συμβεί εαν ο p i δεν παραλάβει το x λόγω κάποιας αλυσίδας εσφαλμένων επεξεργαστών: Αφού όμως έχουμε f + 1 γύρους τότε πρέπει να υπάρχουν f + 1 εσφαλμένοι επεξεργαστές. Αυτό αντιφάσκει την αρχική μας υπόθεση ότι το πολύ f επεξεργαστές μπορεί να καταρρεύσουν. ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 10 q1q1 q2q2 qfqf q f+1 pjpj pipi round 1 round 2 round f round f+1 …

Απόδοση Αλγορίθμου Αριθμός επεξεργαστών n > f f+1 γύρους Το πολύ n 2 |V| μηνύματα όπου V είναι το σύνολο των εισόδων Κάθε μήνυμα έχει μέγεθος log|V| bits ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 11

Κάτω Φράγμα στους Γύρους Υποθέσεις: n > f + 1 Κάθε επεξεργαστής στέλνει μήνυμα σε όλους τους άλλους επεξεργαστές σε κάθε γύρο. Δυαδική είσοδος {0,1} ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 12

Αραιά-Εσφαλμένες Εκτελέσεις Ένα κακό σενάριο για ένα αλγόριθμο ανεκτικό σε σφάλματα κατάρρευσης είναι όταν υπάρχει ένα σφάλμα σε κάθε γύρο. Αραιά-Εσφαλμένες εκτελέσεις ονομάζονται αυτές που έχουν το πολύ ένα σφάλμα σε κάθε γύρο Μας ενδιαφέρουν αυτές οι εκτελέσεις σε αυτή την απόδειξη ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 13

Σθένος Διατάξεων Τιμών Το σθένος μιας διάταξης τιμών C είναι το σύνολο όλων των τιμών που μπορούν να αποφασιστούν από ένα μη-εσφαλμένο επεξεργαστή σε μια διάταξη που μπορεί να προκύψει από το C, σε μια νόμιμη (αραιά-εσφαλμένη) εκτέλεση. Δισθενή Σύνολο (Bivalent): το σύνολο που περιέχει 0 και 1. Μονοσθενή Σύνολο (Univalent): το σύνολο που περιέχει μια μόνο τιμή –0-σθενή (0-valent) αν περιέχει μόνο το 0, ή –1-σθενή (1-valent) αν περιέχει μόνο το 1 ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 14

Υπολογισμός Σθένους ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 15 C EFGD <= decisions 0/1 : bivalent 1 : 1-valent 0 : 0-valent 0/1 0 1

Κάτω Φράγμα Θεώρημα: Κάθε αλγόριθμος συμφωνίας ανεκτικός σε f σφάλματα κατάρρευσης χρειάζεται τουλάχιστον f+1 γύρους στην χειρότερη περίπτωση. Στρατηγική Απόδειξης: ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 16  Δισθενής αρχική διάταξη … round 1 round 2 round f - 2 round f - 1 Να δείξουμε ότι μπορεί να διατηρηθεί η δισθένεια μέχρι το γύρο f - 1 round f Μπορεί να αποτραπεί ένας μ.ε. επεξ. από το να αποφασίσει στο γύρο f

Ύπαρξη Δισθενής Αρχικής Διάταξης Ας υποθέσουμε χάριν της αντίφασης ότι όλες οι αρχικές διατάξεις είναι μονοσθενείς Επομένως: ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 17 inputsvalency 000… …01? 000…11? … 001…11? 011…11? 111…111 Από την συνθήκη εγκυρότητας 0 1 Πρέπει να υπάρχουν δύο κοντινές διατάξεις Ι 0, Ι 1 τ.ω. η πρώτη είναι 0-σθενής και η δεύτερη 1-σθενής Ι0Ι0 Ι1Ι1

Ύπαρξη Δισθενής Αρχικής Διάταξης Έστω –I 0 είναι 0-σθενή αρχική διάταξη –I 1 είναι 1-σθενή αρχική διάταξη –τ.ω. Διαφέρουν στην είσοδο του p i –σ είναι μια ακολουθία γεγονότων ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 18 I0I0  p i καταρρέει από την αρχή, και δεν έχουμε άλλα σφάλματα. Από την συνθήκη τερματισμού όλοι οι υπόλοιποι αποφασίζουν. Όλοι εκτός του p i επιστρέφουν 0 I1I1  Κανένας επεξεργαστής εκτός από τον p i δεν μπορεί να ξεχωρίσει αυτή την εκτέλεση από την πρώτη. Όλοι εκτός του p i επιστρέφουν 0

Διατήρηση Δισθένειας Έστω  ’ είναι μια (αραιά-εσφαλμένη) εκτέλεση k-1 γύρων που καταλήγει σε μια δισθενή διάταξη. –για k - 1 < f – 1 Θέλουμε να δείξουμε ότι υπάρχει επέκταση της α’ με ένα γύρο (έστω α) η οποία επίσης καταλήγει σε δισθενή διάταξη –επομένως  έχει k < f γύρους Για να φτάσουμε στο επιθυμητό αποτέλεσμα υποθέτουμε με αντίφαση ότι κάθε επέκταση της α’ με ένα γύρο καταλήγει σε μονοσθενή διάταξη ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 19

Διατήρηση Δισθένειας Πιθανές εκτελέσεις α: ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 20 '' failure-free round k 1-val p i crashes 0-val p i fails to send to  p i fails to send to q 1,…,q m p i fails to send to q 1,…,q j+1 p i fails to send to q 1,…,q j rounds 1 to k-1 1-val 0-val bi- val … … Επικεντρωθείτε σε αυτές τις εκτελέσεις

Διατήρηση Δισθένειας Μόνο ο q j μπορεί να αποκαλύψει την διαφορά των εκτελέσεων! ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 21 '' 1-val 0-val p i fails to send to q 1,…,q j p i fails to send to q 1,…,q j+1 rounds 1 to k-1 round k  n.f. decide 1 n.f. decide 1 q j+1 fails in rd. k+1; no other failures  Μόνο ο q j+1 τα ξεχωρίζει

Δεν μπορούμε να αποφασίσουμε στο γύρο f Δείξαμε ότι μπορούμε να κατασκευάσουμε μια αραιά- εσφαλμένη εκτέλεση , f - 1 γύρων, που καταλήγει σε μια δισθενή διάταξη. Τι θα συμβεί αν επεκτήνουμε την α κατά ένα ακόμα γύρο (δηλαδή να έχει συνολικά f γύρους); –Μπορεί να χαθεί η δισθένεια –Αλλά μπορούμε να εμποδίσουμε ένα επεξεργαστή από το να αποφασίσει στον γύρο f και έτσι θα χρειαστούμε ακόμα ένα γύρο (συνολικά f+1 γύρους) ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 22

Δεν μπορούμε να αποφασίσουμε στο γύρο f Περίπτωση 1: Μετά από κάποιο επιπρόσθετο γύρο φθάνουμε σε δισθενή διάταξη –Τότε δεν μπορεί να παρθεί απόφαση Περίπτωση 2: Όλες οι επεκτάσεις ενός γύρου του α μας οδηγούν σε μονοσθενή διάταξη. ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 23

Δεν μπορούμε να αποφασίσουμε στο γύρο f p j, p k μη-εσφαλμένοι επεξ. κατά τον γύρο f –Μπορεί να συμβεί αφού n≥f+2 ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 24  0-val p i fails to send to p j rounds 1 to f-1 1-val bi- val. p i sends to p k p i might send to p k p i sends to p k look same to p k look same to p j p k either undecided or decided 1 p j either undecided or decided 0 p i sends to p j 0/1 Failure-free p i fails to send to p j round f

Ερωτήσεις; ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 25