Πιθανοκρατικοί Αλγόριθμοι

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία)
Advertisements

Γραφήματα & Επίπεδα Γραφήματα
Βασικές έννοιες αλγορίθμων
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
ΓΡΑΜΜΑΤΙΚΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ I
Απαντήσεις Προόδου II.
Διαχείριση Έργου Οργάνωση, σχεδιασμός και προγραμματισμός έργων ανάπτυξης λογισμικού.
ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ ΤΜΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΤΟΙΧΕΙΑ ΨΕΥΔΟΚΩΔΙΚΑ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΒΑΣΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΙΝΑΚΩΝ
Προγραμματισμός Ι Πίνακες •Ο πίνακας είναι μία συλλογή μεταβλητών ίδιου τύπου, οι οποίες είναι αποθηκευμένες σε διαδοχικές θέσεις μνήμης. Χρησιμοποιείται.
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA.
Πολυπλοκότητα Παράμετροι της αποδοτικότητας ενός αλγόριθμου:
Page  1 Ο.Παλιάτσου Γαλλική Επανάσταση 1 ο Γυμνάσιο Φιλιππιάδας.
Αλγόριθμοι και Πολυπλοκότητα
Εισαγωγικές Έννοιες Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Αναγνώριση Προτύπων.
Ενότητα Η Δομή Επανάληψης
Κεφάλαιο 2ο Πεπερασμένα αυτόματα.
Γραφήματα & Επίπεδα Γραφήματα
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 5) 1 Τυχαία συνάρτηση Μία τυχαία συνάρτηση (ΤΣ) είναι ένας κανόνας με τον οποίο σε κάθε αποτέλεσμα ζ.
Β΄ ΓΕΛ ΕισΑρχΕπ Η/Υ παρ – 2.2.5
Κοντινότεροι Κοινοί Πρόγονοι α βγ θ δεζ η π ν ι κλμ ρσ τ κκπ(λ,ι)=α, κκπ(τ,σ)=ν, κκπ(λ,π)=η κκπ(π,σ)=γ, κκπ(ξ,ο)=κ ξο κκπ(ι,ξ)=β, κκπ(τ,θ)=θ, κκπ(ο,μ)=α.
Δυναμικός Προγραμματισμός
1 Θεματική Ενότητα Γραφήματα & Επίπεδα Γραφήματα.
Προσεγγιστικοί Αλγόριθμοι
Το Μ/Μ/1 Σύστημα Ουράς Μ (η διαδικασία αφίξεων είναι Poisson) /
Η αλληλουχία των ενεργειών δεν είναι πάντα μία και μοναδική!!!
Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ» Β΄ τάξης Γενικού Λυκείου
Μάθημα 2 ο : Βασικές έννοιες 1 Ακαδημαϊκό Έτος
Ανάλυση Πολλαπλής Παλινδρόμησης
Η αλληλουχία των ενεργειών δεν είναι πάντα μία και μοναδική!!!
Γράφοι: Προβλήματα και Αλγόριθμοι
Dr. Holbert Νικ. Α. Τσολίγκας Χρήστος Μανασής
Σέρρες,Ιούνιος 2009 Τίτλος: Αυτόματος έλεγχος στο Scilab: Ανάπτυξη πακέτου για εύρωστο έλεγχο. Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα Επιβλέπων Καθηγητής.
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 2: ΘΕΜΑΤΑ ΘΕΩΡΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Η/Υ
Ειδικά θέματα υπολογισμού και πολυπλοκότητας Θέμα : Προσεγγιστικοί αλγόριθμοι Γαζη Ιωαννα ΑΜ:3900.
ΘΕΩΡΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ 7.4 – 7.6 NP ΠΛΗΡΟΤΗΤΑ.
Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης
Ενότητα Α.4. Δομημένος Προγραμματισμός
Probabilistically Checkable Proofs Theorem (PCP THEOREM) Ομιλητής Ασημακόπουλος (Ευ)Άγγελος.
Θεωρία Υπολογισμού Εισαγωγή (μέρος 2 ο ) Πρακτική Θεωρία.
ΘΕΩΡΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ 7.4 – 7.6 NP ΠΛΗΡΟΤΗΤΑ.
Μηχανές Turing και Υπολογισιμότητα
Ο αλγόριθμος Bellman-Ford (επανεξετάζεται)
Θεωρία Υπολογισμού Εισαγωγή (μέρος 3 ο ). Χρειαζόμαστε Μοντέλα Εμπρός πατάκι Πίσω πατάκι Πόρτα ΚλειστόΑνοιχτό.
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών – Τμήμα Πληροφορικής και Τηλεπικοινωνιών 1 Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Προπτυχιακό.
ΜΑΘΗΜΑ: ΣΧΕΔΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Παρασκευή, 3 Απριλίου 2015Τμ.
Επανάληψη.
Computers: Information Technology in Perspective By Long and Long Copyright 2002 Prentice Hall, Inc. Προγραμματισμός Η / Υ 6 η Διάλεξη.
Δομές Δεδομένων - Ισοζυγισμένα Δυαδικά Δένδρα (balanced binary trees)
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 4: Συνδεσμικότητα Data Engineering Lab 1.
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 2: ΘΕΜΑΤΑ ΘΕΩΡΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Η/Υ
Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο.
Χρονική Πολυπλοκότητα και Μοντέλα
Θεωρία Υπολογισμού Αλγόριθμοι και Μηχανές Turing Υπολογισιμότητα.
Θεωρία Υπολογισμού Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών.
Θεωρία Υπολογισμού Μηχανές Turing. w#w προσομοίωση.
Θεωρία Υπολογισμού Κλάσεις P και NP.
Θεώρημα Διαγνωσιμότητας
Επιλυσιμότητα – Διαγωνοποίηση Καντόρ
Χρονική Πολυπλοκότητα
Διαγνώσιμες και μη-διαγνώσιμες ασυμφραστικές γραμματικές και γλώσσες
Θεωρία Υπολογισμού Λήμμα της Άντλησης -Παραδείγματα.
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Επίλυση Προβλημάτων με Αναζήτηση
Διδάσκων: Δρ. Τσίντζα Παναγιώτα
Αρχεσ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ ΤΑξη Β΄
Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα (μέρος ΙIΙ)
Μεταγράφημα παρουσίασης:

Πιθανοκρατικοί Αλγόριθμοι Ειδικά Θέματα Υπολογισμού και Πολυπλοκότητας Σπυριδούλα Γραβάνη 31/05/2012

Τι είναι πιθανοκρατικός αλγόριθμος; (1) Input Algorithm Output Random numbers

Τι είναι πιθανοκρατικός αλγόριθμος; (2) Χρησιμοποιεί το αποτέλεσμα μιας τυχαίας διεργασίας σε κάποια υπολογιστικά βήματα. Η έξοδος αποτελεί μια τυχαία μεταβλητή, δηλαδή μπορεί να διαφέρει σε διαφορετικές εκτελέσεις του αλγορίθμου πάνω στην ίδια είσοδο.

Γιατί; (1) Ντετερμινιστικοί αλγόριθμοι για την επίλυση ενός προβλήματος βρίσκουν τη βέλτιστη λύση σε απαγορευτικά μεγάλο χρόνο. Προσεγγιστικοί αλγόριθμοι τερματίζουν σε μικρότερο χρόνο αλλά βρίσκουν υποβέλτιστη λύση.

Γιατί; (2) Οι πιθανοκρατικοί αλγόριθμοι είναι αλγόριθμοι που τερματίζουν σε μικρό χρόνο με μεγάλη πιθανότητα. Βρίσκουν τη βέλτιστη λύση με μεγάλη πιθανότητα. Συνήθως είναι απλοί και εύκολοι στην υλοποίηση τους.

Προσοχή: Δεν πρέπει να συγχέονται με την πιθανοτική ανάλυση του μέσου χρόνου εκτέλεσης ενός ντετερμινιστικού αλγόριθμου. Στην περίπτωση αυτή η είσοδος προέρχεται από πιθανοτική κατανομή. Στόχος είναι ο υπολογισμός του αναμενόμενου χρόνου εκτέλεσης.

Τύποι πιθανοκρατικών αλγορίθμων Monte Carlo: Τερματίζει σε ντετερμινιστικό (πολυωνυμικό) χρόνο, πιθανώς με λανθασμένη έξοδο. Las Vegas: Παράγει πάντοτε τη σωστή έξοδο. Ο χρόνος τερματισμού του ωστόσο αποτελεί μια τυχαία μεταβλητή με φραγμένη αναμενόμενη τιμή.

Παράδειγμα: Τυχαίος Περίπατος (1) Θεωρούμε τον εξής πιθανοκρατικό αλγόριθμο για το πρόβλημα SAT: “Ξεκίνα με οποιαδήποτε τιμοδοσία Τ και επανέλαβε τα επόμενα r φορές: Αν επαληθεύονται όλες οι προτάσεις, τότε απάντησε: “ ο τύπος είναι αληθεύσιμος” και σταμάτα. Αλλιώς, σε μια πρόταση που δεν επαληθεύεται, διάλεξε τυχαία μια από τις μεταβλητές τις και δώσε την αντίθετη τιμοδοσία σε αυτή. Μετά από r φορές τερμάτισε , απαντώντας: “ ο τύπος δεν ικανοποιείται με μεγάλη πιθανότητα”. ”

Παράδειγμα: Τυχαίος Περίπατος (2) Θεωρούμε το πρόβλημα: 2-SAT = { <φ> | ο φ είναι ένας αληθεύσιμος τύπος σε 2CNF } Θεώρημα: Αν εφαρμόσουμε τον Τυχαίο Περίπατο για βήματα σε οποιοδήποτε αληθές στιγμιότυπο του 2-SAT με n μεταβλητές, τότε με πιθανότητα τουλάχιστον ίση με ½ θα προκύψει αληθής τιμοδοσία.

Μειονεκτήματα Υπάρχει πεπερασμένη πιθανότητα λάθους. Αυτή η πιθανότητα ωστόσο , μπορεί να γίνει αυθαίρετα μικρή με επαναληπτική εκτέλεση της τυχαιότητας. Δεν υπάρχει πραγματική τυχαιότητα αριθμών. Οι αλγόριθμοι χρησιμοποιούν ψευδοτυχαίους αριθμούς , γι’αυτό και η έξοδός τους εξαρτάται από την ποιότητα της γεννήτριας. Η ανάλυση του χρόνου εκτέλεσης, καθώς και της πιθανότητας σωστής εξόδου μπορεί να είναι δύσκολη.

Πιθανοκρατικές Κλάσεις Πολυπλοκότητας

Πιθανοκρατική Μηχανή Turing (1) Σε κάθε κλάδο b του υπολογισμού της για είσοδο w αποδίδουμε πιθανότητα: όπου k: το πλήθος των κερματοριπτικών βημάτων κατά μήκος του b. Πιθανότητα αποδοχής της w από τη μηχανή:

Πιθανοκρατική Μηχανή Turing (2) Πιθανότητα απόρριψης της w από τη μηχανή: Για , η μηχανή διαγιγνώσκει τη γλώσσα L με πιθανότητα σφάλματος ε όταν ισχύουν οι εξής συνθήκες: Δηλαδή η πιθανότητα λάθους κατά την προσομοίωση της μηχανής δεν πρέπει να υπερβαίνει την ποσότητα ε.

Κλάση RP (Randomized Polynomial Time) Μια γλώσσα L ανήκει στην RP αν και μόνο αν υπάρχει πολυωνυμικού χρόνου πιθανοκρατική μηχανή Turing Μ τέτοια ώστε για κάθε να ισχύουν τα εξής: Ένας RP αλγόριθμος είναι Monte Carlo. Λάθος έξοδος μπορεί να προκύψει μόνο αν Η πιθανότητα λάθους μπορεί να γίνει εκθετικά μικρή εκτελώντας ανεξάρτητες επαναλήψεις του αλγορίθμου.

Κλάση coRP Συμπληρωματική κλάση της RP Μια γλώσσα L ανήκει στην coRP αν και μόνο αν υπάρχει πολυωνυμικού χρόνου πιθανοκρατική μηχανή Turing Μ τέτοια ώστε για κάθε να ισχύουν τα εξής: Ένας coRP αλγόριθμος είναι Monte Carlo. Λάθος έξοδος μπορεί να προκύψει μόνο αν

Κλάση ZPP (Zero Error Probabilistic Polynomial Time) Μια γλώσσα L ανήκει στην κλάση ZPP αν και μόνο αν: Ένα πρόβλημα που ανήκει στην κλάση ZPP έχει αλγόριθμο που δεν κάνει ποτέ λάθος, δηλαδή έναν αλγόριθμο Las Vegas.

Κλάση PP (Probabilistic Polynomial Time) Μια γλώσσα L ανήκει στην PP αν και μόνο αν υπάρχει πολυωνυμικού χρόνου πιθανοκρατική μηχανή Turing Μ τέτοια ώστε για κάθε να ισχύει το εξής: Μια τέτοια μηχανή Μ αποφασίζει την L “βάσει πλειοψηφίας” .

Κλάση BPP (Bounded-Probability Polynomial Time) Μια γλώσσα L ανήκει στην BPP αν και μόνο αν υπάρχει πολυωνυμικού χρόνου πιθανοκρατική μηχανή Turing Μ τέτοια ώστε για κάθε να ίσχουν τα εξής: Μια τέτοια μηχανή Μ αποδέχεται “βάσει καθαρής πλειοψηφίας” ή απορρίπτει “βάσει καθαρής μειοψηφίας”.

Εγκλεισμοί Κλάσεων (1) Οι βασικοί εγκλεισμοί είναι: Ο δεύτερος ισχύει καθώς μια μηχανή που αποφασίζει με “καθαρή” πλειοψηφία, σίγουρα αποφασίζει και με “απλή”. Πιο αυστηρά , από τους ορισμούς, η BPP έχει πιθανότητα λάθους μικρότερη από 0.25 ενώ η PP επιτρέπει πιθανότητα λάθους αυθαίρετα κοντά στο 0.5.

Εγκλεισμοί Κλάσεων (2) Για τον πρώτο εγκλεισμό, σκεφτόμαστε ως εξής: Έστω Ορίζουμε μια πιθανοκρατική μηχανή M’ ως εξής: “ Για είσοδο x εξομοίωσε την M(x) δύο φορές. Αποδέξου αν και μόνο αν μια από τις δύο εξομοιώσεις κατέληξε σε κατάσταση αποδοχής, διαφορετικά απόρριψε.”

Εγκλεισμοί Κλάσεων (3) Αν τότε η Μ(x) δε θα αποδεχθεί, συνεπώς δε θα αποδεχθεί ούτε η M’(x) Αν τότε εξ’ ορισμού: συνεπώς: Συνεπώς:

Εγκλεισμοί Κλάσεων (4) Ένας τελευταίος εγκλεισμός είναι ο εξής: Έστω μια γλώσσα L στo NP η οποία διαγιγνώσκεται από μια μη ντετερμινιστική μηχανή Ν. Ορίζουμε μια νέα μηχανή N’ , πανομοιότυπη με την Ν εκτός από μια νέα αρχική κατάσταση και μια μη ντετερμινιστική επιλογή από αυτή. Η μια πιθανή κίνηση οδηγεί στον αρχικό υπολογισμό της N πάνω στην ίδια είσοδο. Η δεύτερη επιλογή πάντα σε κατάσταση αποδοχής.

Εγκλεισμοί Κλάσεων (5) Έστω μια λέξη x. Αν η Ν με είσοδο x χρειάζεται p(|x|) βήματα και παράγει μονοπάτια υπολογισμού, τότε η N’ παράγει μονοπάτια. Από αυτά τουλάχιστον τα μισά θα τερματίσουν σε κατάσταση αποδοχής (αυτά που ανταποκρίνονται στα μισά μονοπάτια αποδοχής της N’). Έτσι, η πλειοψηφία των υπολογισμών της N’ αποδέχεται αν και μόνο αν υπάρχει τουλάχιστον ένα μονοπάτι υπολογισμού της N(x) που καταλήγει σε αποδοχή, δηλαδή αν και μόνο αν . Συνεπώς η Ν’ αποδέχεται την L με πλειοψηφία και .

Συμπεράσματα Η εισαγωγή τυχαιότητας οδηγεί σε απλότητα και αποτελεσματικότητα κατά τη λύση ενός προβλήματος. Προϋποθέτει την ύπαρξη μιας αμερόληπτης γεννήτριας ανεξάρτητων τυχαίων αριθμών. Η πρόσβαση σε τέτοιες ακολουθίες αριθμών είναι ακριβή, γι’αυτό πρέπει να χρησιμοποιείται με φειδώ όπως ο χώρος και ο χρόνος. Υπάρχουν τρόποι να μειωθεί η τυχαιότητα από τους αλγόριθμους, διατηρώντας την αποδοτικότητα σχεδόν σταθερή.

Ανοιχτά Ζητήματα Η σχέση μεταξύ των κλάσεων BPP και NP παραμένει άγνωστη. Αν , τότε: . Ένας τέτοιος εγκλεισμός μοιάζει απίθανος , καθώς θα σήμαινε πως υπάρχουν πρακτικές λύσεις για NP-Πλήρη προβλήματα. Γνωρίζουμε πως το RP είναι υποσύνολο του BPP και το BPP είναι υποσύνολο του PP , αλλά δεν γνωρίζουμε αν είναι γνήσια υποσύνολα.

Απορίες

Ευχαριστώ!