«Αναλυτική Χημεία – Ενόργανη Ανάλυση» Ισορροπίες Οξέων - Βάσεων

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ογκομέτρηση.
Advertisements

Διαλυτοτητα στερεων σε υγρα
Χημείας Θετικής Κατεύθυνσης
Ιοντισμός ισχυρών οξέων – βάσεων pH και pOH
ΟΞΕΑ Μαρίνα Κουτσού.
Χημείας Θετικής Κατεύθυνσης
Διαλύματα ασθενών μονοπρωτικών οξέων ή βάσεων
pH = -log[H 3 O + ], pOH = -log[OH - ], pH + pOH=pK w =14 Επομένως για καθαρό νερό στους 25 ο C, έχουμε: [H 3 O + ]. [OH - ]= ⇨ [H 3 O + ]=[OH.
Χημείας Θετικής Κατεύθυνσης
Ηλεκτρολύτες ιοντικά υδατικά διαλύματα.
Ρυθμιστικά διαλύματα.
Επίδραση κοινού ιόντος ( Ε.Κ.Ι ).
Γ΄Λυκείου Κατεύθυνσης
Σταθερά χηµικής ισορροπίας Kc:
ΠΟΤΕΝΣΙΟΜΕΤΡΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ pH ΚΑΙ ΠΕΧΑΜΕΤΡΙΚΕΣ ΤΙΤΛΟΔΟΤΗΣΕΙΣ
«Αναλυτική Χημεία – Ενόργανη Ανάλυση»
Ιοντισμός οξέων – βάσεων pH και pOH
Οξέα-βάσεις-άλατα.
ΕΙΣΑΓΩΓΗ ΣΕ ΑΠΛΕΣ ΧΗΜΙΚΕΣ ΕΝΝΟΙΕΣ
Χημείας Θετικής Κατεύθυνσης
ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ
Ορισμός Ένα ρ.δ περιέχει σε ισορροπία ασθενές οξύ και το άλας του π.χ ασθενή βάση και το άλας της π.χ 21/11/20141 Μ. Κουρούκλης Ρυθμιστικό διάλυμα είναι.
Χημείας Θετικής Κατεύθυνσης
«Η οργάνωση της γνώσης»
Ηλεκτρολύτες.
Χημείας Θετικής Κατεύθυνσης
ορισμός των οξέων και των βάσεων από τους Brønsted-Lowry
Επίδραση κοινού ιόντος
Σταθερά ιοντισμού Κa ασθενούς οξέος
ΧΗΜΕΙΑ ΥΔΑΤΙΚΩΝ ΔΙΑΛΥΜΑΤΩΝ
ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ, ΟΞΕΑ, ΒΑΣΕΙΣ, pH. ΟΓΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΟΞΙΚΟΥ ΟΞΕΟΣ
Επίδραση κοινού ιόντος Πώς επηρεάζει το βαθμό ιοντισμού ενός ασθενούς ηλεκτρολύτη η διάσταση ενός ισχυρού ηλεκτρολύτη με κοινό ιόν;
∆είκτες Πρωτολυτικοί ή ηλεκτρολυτικοί δείκτες είναι ουσίες των οποίων το χρώμα αλλάζει ανάλογα με το pH του διαλύματος στο οποίο προστίθενται. Οι δείκτες.
Περί ρυθμιστικών διαλυμάτων
Ιονική ισχύς Η ιονική ισχύς, Ι, ενός διαλύματος δίνεται σαν το ημιάθροισμα του γινομένου της συγκέντρωσης καθενός συστατικού του διαλύματος πολλαπλασιασμένης.
Χημείας Θετικής Κατεύθυνσης
ΑΝΤΙΔΡΑΣΕΙΣ ΣΕ ΥΔΑΤΙΚΑ ΔΙΑΛΥΜΑΤΑ ΓΙΝΟΜΕΝΟ ΙΟΝΤΩΝ ΝΕΡΟΥ Kw
Η σχέση που συνδέει την Κa οξέος και την Κb της συζυγούς βάσης
Oι βάσεις.
Οξέα … συνέχεια… 1.3 Η κλίμακα pH ως μέτρο οξύτητας
8. Ιοντικές ισορροπίες σε υδατικά διαλύματα
Παράγοντες που επηρεάζουν την θέση της χημικής ισορροπίας.
ΗλεκτρολύτεςΗλεκτρολύτες. 1. Τα οξέα, κατά Lewis, είναι δέκτες ασύζευκτου ζεύγους ηλεκτρονίων. Σωστό ή λάθος; 2. Οποιοδήποτε υγρό είναι είτε οξύ είτε.
Σύνθεση των Οξέων Ερευνητική Εργασία Νεκτάριος Μελής Α2.
5. ΟΓΚΟΜΕΤΡΗΣΕΙΣ ΕΞΟΥΔΕΤΕΡΩΣΕΩΣ -πρόκειται για τη σπουδαιότερη τάξη των ογκομετρικών μεθόδων αναλύσεως με ευρύτατη χρήση στη χημεία, τη βιολογία, τη γεωλογία,
ΙΟΝΤΙΚΑ ΚΑΙ ΜΟΡΙΑΚΑ ΔΙΑΛΥΜΑΤΑ
ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ ΚΕΦ.2.H: ΔΕΙΚΤΕΣ (α) ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ο προσδιορισμός του pH ενός διαλύματος γίνεται: Α) ΗΛΕΚΤΡΟΜΕΤΡΙΚΑ (Με πεχάμετρο) Β) ΧΡΩΜΑΤΟΜΕΤΡΙΚΑ.
ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ ΚΕΦ.2.B: ΙΟΝΤΙΣΜΟΣ ΟΞΕΩΝ ΚΑΙ ΒΑΣΕΩΝ (α) ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΗΛΕΚΤΡΟΛΥΤΙΚΗ ΔΙΑΣΤΑΣΗ: Η απομάκρυνση των ιόντων μιας ιοντικής ένωσης από.
Ογκομέτρηση πολυπρωτικών οξέων
ΘΕΩΡΙΑ Καταστατική εξίσωση των τέλειων αερίων Καταστατική εξίσωση των τέλειων αερίων P V = n R T.
ΚΕΦ.2.Δ: Σταθερά ιοντισμού ασθενών οξέων και βάσεων (α)
ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΟΡΙΣΜΟΣ
ΚΕΦ.2.3: ΙΟΝΤΙΣΜΟΣ ΝΕΡΟΥ, pH (α)
Ka . Kb = Kw ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ
Ιοντισμός μονοπρωτικών οξέων 1/2
NaA  Na+ + A- HA + HOH H3O+ + A- ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ
ΔΕΙΚΤΕΣ Πρόκειται για ασθενείς ηλεκτρολύτες (οργανικά οξέα ή βάσεις) με χαρακτηριστική ιδιότητα το διαφορετικό χρώμα αδιαστάτων μορίων και χαρακτηριστικών.
ΠΟΙΑ ΕΙΝΑΙ Η ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΡΥΘΜΙΣΤΙΚΩΝ ΔΙΑΛΥΜΑΤΩΝ ΣΤΟΝ ΟΡΓΑΝΙΣΜΟ
Ρυθμιστικά Διαλύματα.
Ηλεκτρολύτες.
Ηλεκτρολύτες.
Ηλεκτρολύτες.
Ηλεκτρολύτες.
Διαλύματα ασθενών μονοπρωτικών οξέων ή βάσεων
Ιοντισμός ισχυρών οξέων – βάσεων pH και pOH
Ποιές ενώσεις ονομάζονται δείκτες; Που χρησιμοποιούνται οι δείκτες;
Ηλεκτρολύτες.
Διαλύματα ασθενών μονοπρωτικών οξέων ή βάσεων
Διαλύματα ασθενών μονοπρωτικών οξέων ή βάσεων
ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ. Μονόδρομη αντίδραση: 1.Είναι η αντίδραση που γίνεται προς μια μόνο κατεύθυνση. 2.Μετά το τέλος ένα τουλάχιστον από τα αντιδρώντα σώματα.
Μεταγράφημα παρουσίασης:

«Αναλυτική Χημεία – Ενόργανη Ανάλυση» Ισορροπίες Οξέων - Βάσεων Πανεπιστήμιο Ιωαννίνων Σχολή Επιστημών Υγείας Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιών «Αναλυτική Χημεία – Ενόργανη Ανάλυση» Ισορροπίες Οξέων - Βάσεων Δρ. Δημήτριος Στεργίου Διδάσκων Π.Δ. 407/80

Σταθερά ισορροπίας Για τη γενική χημική αντίδραση: aA + bB ⇋ cC + dD Είναι μέγεθος αδιάστατο. Οι συγκεντρώσεις των διαλυμένων ουσιών εκφράζονται σε mol L-1. Για τα αέρια χρησιμοποιείται η πίεση P, η οποία εκφράζεται σε bar. Οι συγκεντρώσεις, που αφορούν καθαρές στερεές ή υγρές ουσίες καθώς και διαλύτες θεωρούνται σταθερές και παραλείπονται. Η σταθερά ισορροπίας (Κ) μία χημικής αντίδρασης, που προκύπτει από το άθροισμα δύο η περισσοτέρων αντιδράσεων ισούται με το γινόμενο των σταθερών ισορροπίας των επί μέρους αντιδράσεων, δηλαδή Κ = Κ1Κ2…Κn.

Σταθερά ισορροπίας Οι παράγοντες που επηρεάζουν τη θέση μίας χημικής ισορροπία είναι: 1. Η συγκέντρωση (C). 2. Η πίεση (P) όταν πρόκειται για αέρια. 3. Η θερμοκρασία (Τ). Αρχή του Le Chatelier: «Η μεταβολή ενός εκ των παραγόντων που επηρεάζουν τη θέση της χημικής ισορροπίας έχει ως αποτέλεσμα τη μετατόπιση αυτής προς εκείνη την κατεύθυνση, κατά την οποία τείνει να αναιρεθεί η μεταβολή αυτή». Για μεταβολή των συγκεντρώσεων, ο αλγεβρικός έλεγχος μπορεί να γίνει με το πηλίκο της αντίδρασης (Q), που μοιάζει με τη σταθερά ισορροπίας Κ: Όταν Q < Κ η ισορροπία μετατοπίζεται προς τα δεξιά. Όταν Q > K η ισορροπία μετατοπίζεται προς τα αριστερά. Σε μία ενδόθερμη αντίδραση η αύξηση της θερμοκρασίας οδηγεί την ισορροπία προς τα δεξιά και η μείωση προς τα αριστερά. Σε μία εξώθερμη αντίδραση η αύξηση της θερμοκρασίας οδηγεί την ισορροπία προς τα αριστερά και η μείωση προς τα δεξιά.

Επίδραση ιοντικής ισχύος Τα ιόντα όταν βρίσκονται σε διαλύματα έχουν την τάση να προσελκύουν μόρια διαλύτη ή άλλα ιόντα αντίθετου φορτίου, με αποτέλεσμα να δημιουργείται γύρω τους μία ιοντική ατμόσφαιρα. Ιοντική ατμόσφαιρα  μείωση της ηλεκτροστατικής έλξης των ιόντων. Η επίδραση της ιοντικής ατμόσφαιρας εκφράζεται με την ιοντική ισχύ (μ) που αποτελεί μέτρο της συνεισφοράς του κάθε ιόντος, ανάλογα με το φορτίο του: όπου ci η συγκέντρωση του κάθε ιόντος και zi το φορτίο του ιόντος. Μείωση της ηλεκτροστατικής έλξης των ιόντων  η πραγματική συγκέντρωση είναι μικρότερη από τη θεωρητική.

Επίδραση ιοντικής ισχύος Ενεργή συγκέντρωση ή ενεργότητα (α): η πραγματική συγκέντρωση που λαμβάνει υπόψη την επίδραση της ιοντικής ισχύος. Συντελεστής ενεργότητας (γ): μέτρο της απόκλισης της συγκέντρωσης από τη θεωρητική. Λαμβάνει τιμές 0 ≤ γ ≤ 1. Η σχέση που συνδέει την ενεργότητα (α) με τη θεωρητική συγκέντρωση (C): α = γ . C Ανάλογη μορφή λαμβάνει και η εξίσωση της σταθεράς ισορροπίας: Σε αραιά διαλύματα και χαμηλή ιοντική ισχύ (μ) οι συντελεστές ενεργότητας (γ) προσεγγίζουν τη μονάδα, οπότε ισχύει ότι α ≈ C και K ≈ Kc. Οι συντελεστές ενεργότητας υπολογίζονται από την εξίσωση Debye-Hückel.

pH = -logαΗ+= -log[H+]γΗ+ Αυτοπρωτόλυση: η αντίδραση ενός ουδέτερου διαλύτη, κατά την οποία δύο μόρια του ίδιου είδους ανταλλάσσουν ένα πρωτόνιο δημιουργώντας δύο ιόντα, π.χ. η αυτοπρωτόλυση του ύδατος: Η2Ο + Η2Ο ⇋ Η3Ο+ + ΟΗ- Η αντίδραση αυτοϊονισμού του ύδατος μπορεί να γραφεί και ως: Η2Ο ⇋ Η+ + ΟΗ- με σταθερά ισορροπίας: Κw = [H+][OH-] = 1,01×10-14 στους 25°C Προσεγγιστικός ορισμός pH (Sørensen, 1909): pH = -log[H+] Πραγματικός ορισμός pH: pH = -logαΗ+= -log[H+]γΗ+ Επίσης ισχύει: pH + pOH = pKw = 14

Κλίμακα pH Το pH αποτελεί μέτρο έκφρασης της οξύτητας ενός διαλύματος. Ειδικότερα για τα αμινοξέα έχουν σημασία το ισοϊοντικό και το ισοηλεκτρικό σημείο. Ισοϊοντικό σημείο: είναι η τιμή του pH που παρέχει το καθαρό, ουδέτερο πολυπρωτικό οξύ. Ισοηλεκτρικό σημείο: η τιμή του pH στο οποίο το πολυπρωτικό οξύ έχει συνολικό φορτίο μηδέν.

Οξέα – Βάσεις Ορισμός κατά Arrhenius Οξύ: οι ηλεκτρολύτες που σε υδατικά διαλύματα παρέχουν με διάσταση Η+. Βάση: οι ηλεκτρολύτες που σε υδατικά διαλύματα παρέχουν με διάσταση ΟΗ-. Ορισμός κατά Brönsted - Lowry Οξύ: κάθε ιόν ή μόριο που σε υδατικά διαλύματα δρα ως δότης Η+. Βάση: κάθε ιόν ή μόριο που σε υδατικά διαλύματα δρα ως δέκτης Η+. Ορισμός κατά Lewis Οξύ: κάθε άτομο, μόριο ή ιόν που δρα ως δέκτης e-. Βάση: κάθε άτομο, μόριο ή ιόν που δρα ως δότης e-.

Οξέα – Βάσεις

Σταθερές Διάστασης Ασθενών Οξέων και Βάσεων ΗΑ ⇋ Η+ + Α- οξύ συζυγής βάση Σταθερά διάστασης οξέος ΗΑ: ΒΟΗ ⇋ ΟΗ- + Β+ βάση συζυγές οξύ Σταθερά διάστασης βάσης ΒΟΗ: Σχέση μεταξύ Κα και Κb ενός συζυγούς ζεύγους οξέος – βάσεως: Α- + Η2Ο ⇋ ΗΑ + ΟΗ- Η2Ο ⇋ Η+ + ΟΗ-

Βαθμός Διάστασης Οξέων και Βάσεων ΗΑ ⇋ Η+ + Α- αρχικά: C διΐστανται: x παράγονται: x x X.I.: C – x x x Βαθμός διάστασης (α) οξέος ΗΑ = [Α-] / C = x / C (α ≤ 1) Επίσης ισχύουν οι σχέσεις: και Για την επίλυση προβλημάτων χημικής ισορροπίας, απαιτούνται δύο ακόμα βασικές εξισώσεις: Αρχή ισοστάθμισης φορτίου Αρχή ισοστάθμισης μάζας

π.χ. έστω ένα διάλυμα K3PO4 για το οποίο ισχύει: Αρχή ισοστάθμισης φορτίου: το άθροισμα των θετικών φορτίων σε ένα διάλυμα ισούται με το άθροισμα των αρνητικών φορτίων. π.χ. έστω ένα διάλυμα K3PO4 για το οποίο ισχύει: [H+] + [K+] = [OH-] + [H2PO4-] + 2[HPO42-] + 3[PO43-] Ο συντελεστής μπροστά από κάθε ιόν ισούται πάντα με το φορτίο του ιόντος. Αρχή ισοστάθμισης μάζας: σχετίζεται με τη διατήρηση της ύλης (των ατόμων). Σε ένα διάλυμα, η ποσότητα όλων των σωματιδίων, που περιέχουν ένα συγκεκριμένο άτομο ή ομάδα ατόμων, πρέπει να είναι ίση με την ποσότητα του ατόμου ή της ομάδας ατόμων που προστέθηκε στο διάλυμα. π.χ. έστω ένα διάλυμα 0,0250 Μ Η3PO4 για το οποίο ισχύει: [H3PO4] + [H2PO4-] + [HPO42-] + [PO43-] = 0,0250 M π.χ. έστω ένα διάλυμα 1,00×10-5 Μ [Ag(NH3)2]Cl για το οποίο ισχύει: [Cl-] = 1,00×10-5 Μ και [Ag+] + [Ag(NH3)+] + [Ag(NH3)2+] = 1,00×10-5 Μ [NH4+] + [NH3] + [Ag(NH3)+] + 2[Ag(NH3)2+] = 2,00×10-5 Μ

Ρυθμιστικά διαλύματα Ορισμός: ονομάζονται τα διαλύματα, που έχουν την ιδιότητα να διατηρούν το pH τους πρακτικά αμετάβλητο, όταν σε αυτά προστεθούν μικρές ποσότητες ισχυρών οξέων ή βάσεων ή όταν αραιώνονται. Συνήθως αποτελούνται από μίγμα ενός ασθενούς οξέος και ενός άλατος αυτού (συζυγής βάση) ή μίγμα μίας ασθενούς βάσης και άλατος αυτής (συζυγές οξύ). π.χ. CH3COOH – CH3COONa, NH3 – NH4Cl Η βασική εξίσωση των ρυθμιστικών διαλυμάτων είναι η εξίσωση Henderson – Hasselbalch: Ομοίως για ρυθμιστικό διάλυμα βάσης ισχύει:

Ρυθμιστικά διαλύματα Ρυθμιστική ικανότητα ή ρυθμιστική χωρητικότητα (β): αποτελεί μέτρο της ικανότητας ενός ρυθμιστικού διαλύματος να αντιστέκεται σε μεταβολές του pH όταν σε αυτό προστεθεί ισχυρό οξύ ή βάση. Δίνεται από τη σχέση: β = dCb / dpH = -dCa / dpH όπου τα Ca και Cb είναι τα mol του οξέος και της βάσης, αντίστοιχα, ανά λίτρο διαλύματος, που απαιτούνται για να μεταβληθεί το pH κατά μία μονάδα. Όσο μεγαλύτερη η ρυθμιστική ικανότητα, τόσο καλύτερα αντιστέκεται στις μεταβολές του pH το ρυθμιστικό διάλυμα. Ένα ρυθμιστικό διάλυμα έχει τη μέγιστη ρυθμιστική ικανότητα όταν το pH είναι ίσο με το pKa (όταν δηλαδή [ΗΑ] = [Α-]). Η επιλογή του ρυθμιστικού διαλύματος γίνεται έτσι ώστε το pKa να βρίσκεται όσο πιο κοντά στο επιθυμητό pH. Χρήσιμο εύρος pH θεωρείται το pKa ± 1 μονάδες pH.