Οι σύγχρονες αντιλήψεις για το άτομο-κβαντομηχανική

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ι. Τα κλασικά πρότυπα. Η δομή του ατόμου.
Advertisements

Αλεξανδροπούλου Χαρίκλεια
Ένα ταξίδι στη διάσταση των στοιχειωδών σωματιδίων
Η δομή του ατόμου . ΙΙ. Το σύγχρονο ατομικό πρότυπο.
Συμμετρίες και νόμοι διατήρησης.
Ένα ταξίδι στη διάσταση των στοιχειωδών σωματιδίων
Το ατομικό πρότυπο του Bohr
ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ
Το Φως
Κυματικός ή Σωματιδιακός Χαρακτήρας
Μηχανικά κύματα.
Περί της φύσης του φωτός
Καλή και δημιουργική χρονιά.
Φυσική Γ Λυκείυ Γενικής Παιδείας - Το Φώς - Η Φύση του Φωτός
Δημόκριτος ( π.Χ.) «Κατά σύμβαση υπάρχει γλυκό και πικρό, ζεστό και κρύο…. Στην πραγματικότητα υπάρχουν μόνο άτομα και το κενό».
ΔομΗ του ΑτΟμου.
Ένα ταξίδι στη διάσταση των στοιχειωδών σωματιδίων
Φυσική Γ’ Λυκείου Γενικής Παιδείας
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ De Broglie- Heisenberg
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι, Α. Λαχανάς17 / 10 / :53:21 AM 1 Από τις διαλέξεις του ακ. έτους
ΠΑΛΑΙΟΤΕΡΕΣ ΚΑΙ ΣΥΓΧΡΟΝΗ ΑΝΤΙΛΗΨΗ
Κβαντικοί αριθμοί Από την επίλυση της εξίσωσης Schrödinger προκύπτουν τρεις κβαντικοί αριθμοί (n, l, ml) οι οποίοι μπορεί να παίρνουν ορισμένες.
ΣΧΗΜΑΤΙΚΗ ΠΑΡΑΣΤΑΣΗ ΑΤΟΜΙΚΩΝ ΤΡΟΧΙΑΚΩΝ
Kυματική θεωρία της ύλης (1924) Κάθε κινούμενο μικρό σωματίδιο, π. χ
Νεύτωνας (Isaac Newton ).
Εξίσωση του Planck E = hn=hc/λ
οι ΘΕΩΡΙΕΣ QED QCD GRAND UNIFIED THEORY ΗΛΕΚΤΡΑΣΘΕΝΗΣ ΘΕΩΡΙΑ
Διανυσματικό πεδίο μεταβολής ηλεκτρονικής πυκνότητας
ΕΛΕΥΘΕΡΑ ΗΛΕΚΤΡΟΝΙΑ ΜΕΣΑ ΣΕ ΜΕΤΑΛΛΑ
ΟΜΙΛΟΣ «ΜΑΘΗΜΑΤΙΚΑ ΚΑΙΛΟΓΟΤΕΧΝΙΑ»
Παραγωγή και διάδοση Ηλεκτρομαγνητικών κυμάτων
3:11:52 PM Α. Λαχανάς.
Χημείας Θετικής Κατεύθυνσης
Φυσική Γ’ Λυκείου Γενικής Παιδείας
Νέες Φυσικές Θεωρίες (τέλος 19ου – Αρχές 20ου Αιώνα)
Ζαχαριάδου Αικατερίνη
Κβαντική Μηχανική Η Εξίσωση Schrödinger Θεωρία Κβαντικής Βαρύτητας
Το πρότυπο του Bohr για το υδρογόνο
Περίθλαση Frauhofer με χρήση του πακέτου Matlab
2ο Λύκειο Αγίας Βαρβάρας
ΜΙΧΑΗΛ Ν. ΠΙΖΑΝΙΑΣ. ΜΙΧΑΗΛ Ν. ΠΙΖΑΝΙΑΣ ΜΙΧΑΗΛ Ν. ΠΙΖΑΝΙΑΣ ΕΠΙΣΚΕΠΤΗΣ ΚΑΘΗΓΗΤΗΣ.
Φυσικές αρχές αλληλεπίδρασης ακτινοβολίας με την ύλη Α.Κ.Κεφαλάς Ινστιτούτο θεωρητικής και φυσικής Χημείας, Εθνικό Ίδρυμα Ερευνών, Β.Κων/νου 48 Αθήναι,
Δυνάμεις – Σωματίδια Δυναμεις Εξ’ αποστάσεως Εξ’ επαφής Τα λεγόμενα σωματίδια φορείς δυνάμεων είναι υπεύθυνα για την αλληλεπίδραση των σωμάτων που βρίσκονται.
To φωτοηλεκτρικό φαινόμενο
Εξίσωση αρμονικού κύματος (Κυματοσυνάρτηση)
H αρχή της αβεβαιότητας ή της απροσδιοριστίας.
Οι σύγχρονες αντιλήψεις
ΣΥΝΟΨΗ (1) 1 Κύματα Μηχανικά κύματα Ηλεκτρομαγνητικά κύματα
Κ Υ Μ Α Τ Ι Κ Η.
Werner Heisenberg (Βέρνερ Χάιζενμπεργκ)
Οι σύγχρονες αντιλήψεις για το άτομο-κβαντομηχανική
ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ ΚΕΦ.1: 1.1 ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ BOHR (α) ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ BOHR. 1913BOHR 1η ΣΥΝΘΗΚΗ (MHXANIKH): Τα ηλεκτρόνια περιφέρονται.
Ενότητα 7: Αρχή της Αβεβαιότητας-Κβαντομηχανική Όνομα Καθηγητή: Χριστόφορος Κροντηράς Τμήμα Φυσικής.
Μερκ. Παναγιωτόπουλος-Φυσικός Κ Υ Μ Α Τ Ι Κ Η.
Κ Υ Μ Α Τ Ι Κ Η.
1 Fun with Physics Η φύση του φωτός 2 Οι ερωτήσεις χωρίζονται σε 2 κατηγορίες : 1. Ερωτήσεις πολλαπλής επιλογής. 2. Ερωτήσεις σωστού - λάθους. 1. Ερωτήσεις.
Φως Σωματίδια ή κύμα.
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED684
Τί τους θέλουμε τους επιταχυντές;
Γενική Χημεία Δομή του ατόμου Δρ. Αθ. Μανούρας.
Η δομή του ατόμου . ΙΙ. Το σύγχρονο ατομικό πρότυπο.
ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ
ΟΠΤΙΚΗ Οπτική ονομάζεται ο κλάδος της Φυσικής που μελετά τη συμπεριφορά και τις ιδιότητες του φωτός, ενώ επιπλέον περιγράφει και τα φαινόμενα που διέπουν.
Η δομή του ατόμου . ΙΙ. Το σύγχρονο ατομικό πρότυπο.
ΣΧΗΜΑΤΙΚΗ ΠΑΡΑΣΤΑΣΗ ΑΤΟΜΙΚΩΝ ΤΡΟΧΙΑΚΩΝ
Η δομή του ατόμου . ΙΙ. Το σύγχρονο ατομικό πρότυπο.
ΔομΗ του ΑτΟμου.
ΔομΗ του ΑτΟμου.
ΔομΗ του ΑτΟμου.
ΣΧΗΜΑΤΙΚΗ ΠΑΡΑΣΤΑΣΗ ΑΤΟΜΙΚΩΝ ΤΡΟΧΙΑΚΩΝ
Μεταγράφημα παρουσίασης:

Οι σύγχρονες αντιλήψεις για το άτομο-κβαντομηχανική Οι σύγχρονες αντιλήψεις για το άτομο-κβαντομηχανική Το σύγχρονο κβαντομηχανικό μοντέλο του ατόμου προέκυψε από πολυετείς επιστημονικές ζυμώσεις στις οποίες συμμετείχαν πολλοί διακεκριμένοι επιστήμονες της εποχής εκείνης (1900-1930). Αν θέλαμε όμως να ξεχωρίσουμε κάποιους, αυτοί θα ήταν: Ο Γάλλος φυσικός Louis De Broglie (1892-1987) O Γερμανός φυσικός Werner Heisenberg(1901-1976) και Ο Αυστριακός φυσικομαθηματικός Erwin Schrodinger (1887-1961)

Η κυματική θεωρία της ύλης (1923) Η κυματική θεωρία της ύλης (1923) Το 1873 ο Maxwell διατύπωσε της ηλεκτρομαγνητικής ακτινοβολίας. Σύμφωνα με αυτή το φώς είναι ένα ηλεκτρομαγνητικό κύμα Το 1900 ο Planck υποστήριξε ότι το φως, όπως και κάθε ακτινοβολία, δεν μεταδίδεται με συνεχή τρόπο αλλά σε μικρά πακέτα, τα οποία ονόμασε κβάντα ή φωτόνια. Ως γνωστό κάθε φωτόνιο μεταφέρει ενέργεια Ε=h.ν Το 1923 ήταν αποδεκτό ότι τα φωτόνια είχαν κυματικά και σωματιδιακά χαρακτηριστικά. Αφού λοιπόν συμβαίνει αυτό, ο De Broglie δέχεται αξιωματικά ότι ίσως και όλες οι μορφές της ύλης έχουν εκτός από σωματιδιακές και κυματικές ιδιότητες Το μήκος κύματος λ ενός σωματιδίου μάζας m και ταχύτητας υ, δίνεται από την σχέση:

Αν λοιπόν θεωρήσουμε ένα πρωτόνιο και ένα ηλεκτρόνιο που κινούνται με την ίδια ταχύτητα υ, σε ποιο σωματίδιο αντιστοιχεί μικρότερο μήκος κύματος;

Το ηλεκτρόνιο λοιπόν έχει διττή φύση: είναι σωματίδιο αλλά είναι και κύμα. Προφανώς η υπόσταση του ηλεκτρονίου είναι μία. Απλά άλλες φορές εκδηλώνεται η σωματιδιακή του υπόσταση και άλλες φορές η κυματική , ανάλογα με τις πειραματικές συνθήκες. Π.χ Η περίθλαση ηλεκτρονίων είναι μια καθαρά κυματική ιδιότητα

Πείραμα Young

Περίθλαση ηλεκτρονίων Περίθλαση ηλεκτρονίων

Παρατηρήστε τις παρακάτω φωτογραφίες: Παρατηρήστε τις παρακάτω φωτογραφίες:

Αρχή αβεβαιότητας του Heisenberg Στην κλασσική μηχανική είναι δυνατόν να προσδιορίσουμε με ακρίβεια ταυτόχρονα την θέση και την ταχύτητα ενός σώματος Στην περίπτωση όμως μικρών σωματιδίων , όπως τα ηλεκτρόνια που έχουν κυματικές ιδιότητες, αυτό είναι αδύνατον. Το 1927 ο Heisenberg διατύπωσε την αρχή αβεβαιότητας ή απροσδιοριστίας σύμφωνα Είναι αδύνατον να προσδιορίσουμε ταυτόχρονα την θέση και την ορμή (p=m.υ) ενός μικρού σωματιδίου π.χ. ηλεκτρονίου

Επιστημονικές απορίες Επιστημονικές απορίες Αν δεχθούμε ότι το ηλεκτρόνιο είναι κύμα και επειδή κάθε κύμα διαχέεται στον χώρο, πως είναι δυνατόν να προσδιορίσουμε με ακρίβεια την θέση ενός ηλεκτρονίου-κύματος; Αν πάλι δεχθούμε ότι το ηλεκτρόνιο είναι σωματίδιο και είναι δυνατόν να προσδιορίσουμε με ακρίβεια την θέση του (καθορισμένες κυκλικές τροχιές) τότε με βάση τους νόμους της κυκλικής κίνησης μπορούμε να προσδιορίσουμε και την ορμή του , κάτι τέτοιο όμως θα παραβίαζε την αρχή αβεβαιότητας του Heisenberg Συμπέρασμα Δεν είναι δυνατόν να μιλάμε για καθορισμένες κυκλικές τροχιές του ηλεκτρονίου, αλλά για την πιθανότητα να βρίσκεται το ηλεκτρόνιο σε μια ορισμένη θέση στο χώρο

Ο Schrodinger δίνει λύση στο πρόβλημα Η εξίσωση αυτή αποτελεί για την κβαντομηχανική, ότι και οι νόμοι του Νεύτωνα για την κλασσική μηχανική Η επίλυση της εξίσωσης Schrodinger η οποία απαιτεί ανώτερα μαθηματικά οδηγεί στις κυματοσυναρτήσεις ψ, οι οποίες περιγράφουν την κατάσταση του ηλεκτρονίου με ορισμένη ενέργεια. Οι κυματοσυναρτήσεις αυτές ονομάσθηκαν ατομικά τροχιακά.

Πυκνότητα ηλεκτρονιακού Η κυματοσυνάρτηση ψ δεν έχει κάποια φυσική σημασία. Το τετράγωνο της όμως ψ2 εκφράζει την πιθανότητα να βρεθεί το ηλεκτρόνιο σε ένα ορισμένο σημείο του χώρου γύρω από τον πυρήνα. Το γινόμενο -e.ψ2 εκφράζει την πυκνότητα του ηλεκτρονιακού νέφους Απόσταση από πυρήνα Πυκνότητα ηλεκτρονιακού νέφους Γραφική παράσταση της πυκνότητας του ηλεκτρονιακού νέφους για το άτομο του υδρογόνου σε θεμελιώδη κατάσταση

Πως όμως απεικονίζουμε σχηματικά το ηλεκτρονιακό νέφος; Πως όμως απεικονίζουμε σχηματικά το ηλεκτρονιακό νέφος; α) με τελίτσες(στιγμές)

β) Με πυκνότητα χρώματος

γ) με «οριακές» καμπύλες Είναι η πιο συνηθισμένη. Το ηλεκτρόνιο έχει 90%- 99% πιθανότητα να βρεθεί εντός του χώρου που καθορίζει η καμπύλη