Προηγμένες Μέθοδοι Δεδομένων Πάνελ yit = b0 + b1xit1 + . . . bkxitk + uit Κεφάλαιο 14
Εκτίμηση των Σταθερών Επιδράσεων Όταν υπάρχει μία παρατηρημένη σταθερή επίδραση, μία εναλλακτική στις πρώτες διαφορές είναι να εκτιμήσουμε τις σταθερές επιδράσεις Θεωρήστε το μέσο όρο ως προς το χρόνο yit = b1xit1 +…+ bkxitk + ai + uit Ο μέσος όρος των ai ως προς το χρόνο θα είναι ai, έτσι αν αφαιρέσουμε την μέση τιμή, ai θα εξαλειφθούν όπως όταν παίρνουμε πρώτες διαφορές
Εκτίμηση των Σταθερών Επιδράσεων (συνέχεια) Εάν κάνουμε αυτή την εκτίμηση με το χέρι, πρέπει να είμαστε προσεκτικοί επειδή πιθανώς να νομίζαμε ότι df = NT – k, αλλά στη πραγματικότητα είναι N(T – 1) – k αφού χάσαμε βαθμούς ελευθερίας εκτιμώντας μέσες τιμές ως προς τον χρόνο. Stata (και πολλά άλλα πακέτα) κάνουνε εκτίμηση σταθερών επιδράσεων με πολύ απλό τρόπο Αυτή η μέθοδο είναι επίσης ίδια όταν περιλαμβάνουμε έναν ξεχωριστό σταθερό όρο για κάθε άτομο
Συγκρίνοντας Πρώτες Διαφορές με Σταθερές Επιδράσεις Πρώτες διαφορές και σταθερές επιδράσεις είναι πανομοιότυπες όταν T = 2 Για T > 2, οι δύο μέθοδοι είναι διαφορετικοί Μάλλον συναντάμε εκτίμηση σταθερών επιδράσεων πιο συχνά από ότι εκτίμηση διαφορών – πιθανώς πιο συχνά επειδή είναι ευκολότερο παρά ότι είναι καλύτερο Οι σταθερές επιδράσεις εφαρμόζονται εύκολα και σε μη ισορροπημένα πάνελ, όχι μόνο σε ισορροπημένα
Τυχαίες Επιδράσεις Αρχίζουμε με το βασικό μοντέλο με ένα σύνθετο σφάλμα, yit = b0 + b1xit1 + . . . bkxitk + ai + uit Προηγμένως υποθέσαμε ότι τα ai συσχετίζονται με τα x, αλλά τι συμβαίνει όταν δεν είναι; Οι OLS εκτιμητές θα ήταν συνεπείς σε αυτή την περίπτωση, αλλά δεν είναι επειδή τα σύνθετα σφάλματα αυτοσυσχετίζονται ως προς τον χρόνο
Τυχαίες Επιδράσεις (συνέχεια) Χρειάζεται να μετασχηματίσουμε το μοντέλο και να εκτελέσουμε GLS για να επιλύσουμε το πρόβλημα και να κάνουμε σωστά συμπεράσματα Η ιδέα είναι να κάνουμε οιονεί-διαφορές με αυτό
Τυχαίες Επιδράσεις (συνέχεια) Χρειάζεται να μετασχηματίσουμε το μοντέλο και να εκτελέσουμε GLS για να επιλύσουμε το πρόβλημα και να κάνουμε σωστά συμπεράσματα Καταλήγουμε με μία σειρά από σταθμισμένους μέσους όρους με OLS και σταθερές επιδράσεις – χρησιμοποιώντας οιονεί προσαρμοσμένα δεδομένα
Τυχαίες Επιδράσεις (συνέχεια) Εάν l = 1, τότε έχουμε απλά τον εκτιμητή με σταθερές επιδράσεις Εάν l = 0, τότε έχουμε απλά τον OLS εκτιμητή Έτσι, όσο μεγαλύτερη είναι η διακύμανση των μη παρατηρημένων επιδράσεων, τόσο πιο κοντά είναι αυτός στον FE (fixed effect) εκτιμητή Όσο πιο μικρή είναι η διακύμανση των μη παρατηρημένων επιδράσεων, τόσο πιο κοντά είναι αυτός στον OLS Το Stata εκτελεί τυχαίες επιδράσεις
Σταθερές ή Τυχαίες Επιδράσεις; Όταν το δείγμα είναι τυχαία επιλεγμένο από έναν μεγάλο πληθυσμό σε μία δεδομένη χρονική στιγμή είναι λογικό να χρησιμοποιούμε τυχαίες επιδράσεις. Όταν εξετάζουμε όλο τον πληθυσμό, π.χ., όλες τις ευρωπαϊκές χώρες, τότε είναι λογικό να χρησιμοποιούμε σταθερές επιδράσεις. Είναι πιο πιθανό να χρησιμοποιήσουμε σταθερές επιδράσεις σε κάποιο πρόβλημα αφού στα περισσότερα προβλήματα υπάρχει κάτι μη-παρατηρημένο που συσχετίζεται με τις x μεταβλητές
Άλλες Χρήσεις των Πάνελ Δεδομένων Είναι πιθανόν να θεωρήσουμε μοντέλα στα οποία υπάρχουν μη-παρατημένες σταθερές επιδράσεις, ακόμα και όταν δεν έχουμε στην πραγματικότητα πάνελ δεδομένα Ένα κοινό παράδειγμα είναι όταν υπάρχει ένα μη παρατηρημένη επίδραση, π.χ. οικογένειας, όταν παρατηρούμε μέλη από ίδιες οικογένειες Μπορεί να διαφοροποιεί αδέρφια Μπορεί να εκτιμήσει ένα μοντέλο με σταθερές επιδράσεις οικογενειών
Επιπρόσθετα Θέματα Πολλά από αυτά τα πράγματα που ήδη ξέρουμε σχετικά με διαστρωματικά και διαχρονικά δεδομένα μπορούν εφαρμοστούν σε πάνελ δεδομένα Μπορούμε να ελέγξουμε και να διορθώσουμε την αυτοσυσχέτιση στα σφάλματα Μπορούμε να ελέγξουμε και να διορθώσουμε την ετεροσκεδαστικότητα Μπορούμε να εκτιμήσουμε τυπικά σφάλματα ανθεκτικά και στα δύο παραπάνω θέματα
Παράδειγμα 14.4 – E-views Open the E-view workfile wagepan.raw Πρέπει να δηλώσουμε το αρχείο ως πάνελ. 1) File > Export > Excel file, 2) File > New > Workfile > Workfile Structure Type=Balanced Data, Frequency=Annual, Start date=1980, End Date=1987, Number of cross sections=545 File > Import > Excel file > Give variable names Save the panel file